Dhisen Alguiterm
Let $a, b \in \mathbb{Z}, b>0$. Then \exists unique sir such that

$$
a=\underset{\substack{\hat{j} \\ \text { sobiret }}}{\lambda_{\text {smaniea }}}, \quad 0 \leqslant \mu<b
$$

Cerdle.
Let $a, b c \mathbb{Z}, b \neq 0$, Then \exists qir $\subset \mathbb{Z}$ suh that

$$
a=b s+r, \quad 0 \leq_{r} \leqslant|b|
$$

Well odang principle (Axiom)
Every non-empty set number conptian a beseg element Archmedeen Provople
If $a, b \in \mathbb{N}$ thes $\exists n \in \mathbb{N}$ such $b_{n}>a$

Execre: we well ontrin prigill io preve dusion algonition

Dinsers
Let a, $b \in \mathbb{Z}$. Ve suy that a clvides b if $^{a,} \Rightarrow c \in \mathbb{Z}$ sudh

$$
b=c a
$$

We widt a / b and sy a is a fents a cluisc of b, and b is a mullarits of a

Theerem
Lef $a, b, c, d \in \mathbb{Z}(1\{0\}$ whe vecersing $)$
(1) a / b iff $-a / b$
(2) $a / 0,1 / a, \quad a / a$
(3) $a / 1$ aff $a= \pm 1$
(4) If a / b and b / c
then ab/cd
(5) If a / b and b / c Then a / c
(6) If a / b and b / a then $a= \pm b$
(7) If all, $b=0$, tan $|a| \leq 161$
(8) If a/b and a/c
the a/(ax $+c y) \quad \forall \pm y c \mathbb{Z}$
Difmition
Lit $a, b, c \mathbb{Z}$. If $c \in \mathbb{Z}$ is such elat c / a and $c 1 b$ the $a^{2}{ }^{2} a$ commen deluser of a and b
If d is a commen divion if a and b and $d \geqslant c, y$ cemmes dries o of a and b, then d, ies goectex commen divisor of a and b. ies is chaterel

$$
\operatorname{gcd}(a, b)=\operatorname{hcf}(a, b)
$$

or mare wrually (a, b)

Euclicls Algarnterm
How to find (a, b) ?
Melsod: Reqeatext use of drised alyorithm
Assume $a>b . \exists q_{1}, r \in \mathbb{Z}$ st

$$
a=b_{s_{1}}+r_{1} \quad 0 \leqslant \mu_{1}<b
$$

If $r_{1}=0$ STOR
as b / a and $(a, b)=b$
Uttionise conside b and r_{1}. Find $q_{2} r_{2}$ st

$$
b=q_{2} n_{1}+n_{2}, \quad 0 \leq n_{2}<n_{1}
$$

If $r_{2}=0$, ston
Othente continive: find $q_{3, n}, \in \mathbb{Z}$ st

$$
r_{1}=q_{3} r_{3}+r_{3} \quad, 0 \leqslant n_{3}<n_{3}
$$

Cluim
The lewt non-zer remande is (a, b)

Theorem
If $d=(a, 0)$, the $\exists \forall y \in z$ st $d=a x+b y$
Poof - Worl Euclids thloonittmo hachards
Conolley
Let $a, b, x, y \in z$, witb $d=(a, b)$
axtly is a muloiple of d
it $a x+l y=n$ hes salutens $x y \in \mathbb{Z}$ $2 y \mathrm{~d} / \mathrm{l}$

Defontane
If $(a, b)=1$ we sy a and b are coperme
(eallay

$$
\begin{aligned}
& (a, 0)=1 \quad \text { 林 } \quad \exists x y<z \text { se } \\
& a x+b y=1
\end{aligned}
$$

Galley
If $d=(a, b)$
then $\left(\frac{a}{d}, \frac{b}{d}\right)=1$
Colly
If $a / c, b / c$ and $(a, b)=1$

$$
a b / c
$$

Euchid's Lemma
If $a / b c$ and $(a, b)=1$, then a / c

As $(a, b)=1$
$\exists x, y \in \mathbb{Z}$ st

$$
a x+b y=1
$$

Hence $c a x+c l y=c$
and a / c

Diophontine Eguatien
linees, $a, b, c \in \mathbb{Z}$. Find $x, y \in \mathbb{Z}$ st

$$
a x+b y=c
$$

This has solultoros $x y y(a, b) / c$
Gven one soluter ${ }^{x}$ yo the outs
solutums ore given

$$
\begin{aligned}
& x_{r}=x_{0}+\frac{b}{(a, l)}{ }^{r} \\
& y_{r}=y_{0}-\frac{a}{(a, l)} r
\end{aligned}
$$

Supore x^{\prime}, y^{\prime} is anothen solutien

$$
\begin{aligned}
& c=a x_{0}+y_{0}=a x^{\prime}+b y_{1} \\
& a\left(x_{0}-x^{\prime}\right)=b\left(y^{\prime}-y_{0}\right)
\end{aligned}
$$

Divide out (a,l) and ase Euclids Lemma

Pames
$\begin{aligned} & \text { An integer } \\ & \text { only dirisous }\end{aligned}>1$ are pine of its
Questañ
(1) Is tores a logest? NO
(2) is tix a formula for
(3) How mny primes are lees thon $\sim \frac{N}{\log N} \quad$ Prme number

Theorem
Let p be prome $a, b \in \mathbb{Z},\{0\}$
(1) If plab then pla or $p l b$
(2) Let $a_{i} \in z, i=1, \ldots, t$. If
$p \mid \prod_{i=1}^{t} a_{i}$
then $\exists i \in\{1, \ldots, t\}$ st plai
(3) Let q_{1}, \cdots, y_{t} be prme

If $p / \prod_{i=1}^{t} q_{c}$
then $\exists i \in\{1, \ldots, t\}$
st $p=q_{i}$

Fundamental Theerem of Arithmetre Fverytien natural number $n>1 \mathrm{fm}$ be Fveryitem as a unare unique product of promes Usmally we writo

$$
n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}
$$

p_{i} prime, $p_{i} \neq p_{j} \quad i \neq j, \quad \alpha_{i} \in \mathbb{N}$
Theerem
There ore infriitof many primes
prodf
Suppore it is not ind and there are anly finitet many prims
$p_{1}, p_{2}, \ldots, p_{t}$
Let $N=p_{1} p_{2} \ldots p_{t}+1$
Clewry $N^{>} p_{i}, i=1, \ldots, t$ so N is composito

Therefore at has a prime chuison
It is not possible for $q=p_{i}$

Tun primes
Ave tand unfintef meny twars primes? Undenewn
๓ 3,5 17,19
If is presible alitiab long exargs of compesios number

$$
(n+1)!+2,(n+1)!+3, \ldots,(n+1)!+(n+1)
$$

Goldboch's cenjectaro (1742)
Engry even number is tex sam of cons or tiono primes

Congruences
Let $a, b \in \mathbb{Z}, n \in \mathbb{N},\{1\}$. We sy $a \equiv b(\bmod n) \quad$ if $n /(a-l)$
if $\exists u \in \mathbb{Z}$ st $(a-b)=n k$

Theerems
(1) $a \equiv a(\bmod n)$
(reflesine)

$$
\forall a \in \mathbb{Z}, x \in \mathbb{N} \mid\{1\}
$$

(2) If $a \equiv b(\bmod n)$ (symmetric) then $b \equiv a(\bmod n)$
(3) If $a \equiv b(\bmod n) \quad($ troisitue $)$ and $b \equiv c(\bmod n)$ then $a \equiv c(\bmod n)$
(4) If $a=b\left(\bmod _{n}\right)$
and $c \equiv d(\bmod n)$
then $a+c \equiv b+d(\bmod n)$
and $a c=b d(\bmod n)$
(5) If $a \equiv b(\bmod a)$
then $a+c=b+c\left(\bmod l_{n}\right)$
$a c \equiv b c(\bmod n)$
(6) If $a \equiv b(\bmod n)$
then $a^{k} \equiv b^{k}(\operatorname{moc} n) \quad K \in \mathbb{N}$

Let $a \in \mathbb{Z}, n \in \mathbb{N}$. We know $\exists b_{1} \in \mathbb{Z}$ st

$$
a=b n+n, 0 \leq r<n
$$

we soy r as lest non-negation residue $(\bmod n)$

Ary set of a numbers which ove calledise a compongrent set (moda) is callad ise acongruent cot mod a residues
(mod n)

Lneer Compestionos
I mssel a b.e
$a x=1$ (mach)
the $\exists u$ st

$$
a x-b=U_{m}
$$

h

$$
a x-u_{n}=b
$$

(1) when $(n, m) / b$
(2) If x_{0} is a solutten thes ather

$$
x_{0}+\frac{t m}{(a, m)}
$$

There cye (am) incongruent salutow (modn)

Simultereens Lneer Congruewry
When dors tex systems

$$
x \equiv a_{i}\left(\bmod n_{i}\right)
$$

hove solutroxs

Chnese Remainder Theerem
Let $n_{1}, \ldots, n_{t} \in \mathbb{N} \backslash\{1\}$
and $a_{1}, \ldots, a_{t} \in \mathbb{Z}$
Supose

$$
\left(n_{i}, n_{j}\right)=1, \quad i \neq j
$$

Then tho system

$$
x \equiv a_{i}\left(\bmod n_{i}\right)
$$

hos a ungue solution $\left(\bmod \prod_{i=1}^{t} n_{i}\right)$

Non Ineer Congrueres
Let f be a polgnanial of degree n,
Aim salve

$$
f(x)=O\left(\bmod \prod_{i=1}^{t} \rho_{i}^{\alpha_{i}}\right)
$$ Ist recluctey; This congrueme equato

has a saluton iff

$$
f(x)=0\left(\bmod p_{i}^{\alpha_{i}}\right)
$$

has a salutex for $i=1, \ldots, t$ 1 solultes is to
To deteminos thes a salutios to ($\$$) solve the syitem

$$
x \equiv x_{i}\left(\bmod p_{i}^{a_{i}}\right)
$$

usny CRT
2nd rechuteon:
We will show ento solving

$$
f(x) \equiv 0\left(\bmod p^{\alpha}\right) \quad \rho \text { a paime }
$$

redures to salving

$$
f(s) \equiv 0(\text { mod } p)
$$

Suypose x_{0} is a solutan it

$$
f(x)=0 \bmod p^{\alpha}
$$

ve will ur the x construct solutions (mod $p^{\alpha-1}$)
The Taylor palgnanial of of

$$
\begin{aligned}
& f\left(x_{0}+t p^{\alpha}\right)=f\left(x_{0}\right)+t p^{\alpha} f^{\prime}\left(x_{0}\right)+\frac{\left(t p^{\alpha}\right)^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+ \\
& \text { Nondpaly }^{0}+\ldots+\frac{\left(t p^{\alpha}\right)^{n} f^{(n)}\left(x_{0}\right)}{n!}
\end{aligned}
$$

When $\approx x_{0}+t p^{a}$ a solution of

$$
f \infty=0\left(\operatorname{mad} p^{\alpha+1}\right)
$$

If $x_{0}+t_{p}{ }^{2}$ salves

$$
f(x) \equiv O\left(\bmod p^{\alpha+1}\right)
$$

Le mat have

$$
f\left(x_{0}\right)+t p^{\alpha} f^{\prime}\left(x_{0}\right)=0\left(\operatorname{mal} p^{\alpha+1}\right)
$$

is we mutt hove that

$$
p /\left(\frac{f\left(x_{0}\right)}{p^{2}}+t f^{\prime}\left(x_{0}\right)\right)
$$

ie $\frac{f\left(x_{0}\right)}{p^{\alpha}}+t f^{\prime}\left(x_{0}\right) \equiv 0(\bmod p)$
so $t f^{\prime}\left(x_{0}\right)=-\frac{f\left(x_{0}\right)}{p^{a}}(\bmod p)$
If $p f f^{\prime}\left(x_{0}\right)$ we have a unique
Now consider cos case $p / f^{\prime}\left(x_{0}\right)$

$$
f\left(x_{0}+t p^{\alpha}\right)=f\left(x_{0}\right)+t p^{\alpha} f^{\prime}\left(x_{0}\right)+\ldots+\ldots
$$

$0\left(\right.$ mod $\left.p^{a+1}\right)$
If $f(x)=0\left(\bmod p^{\alpha+1}\right)$ then

$$
f\left(x_{0}+t p^{\alpha}\right)=0\left(\bmod p^{\alpha+1}\right), \forall t
$$

If $f\left(x_{0}\right) \neq 0\left(\bmod p^{\alpha+1}\right)$ than
there are no t st

$$
f\left(x_{0}+t p^{\alpha}\right)=0\left(\bmod p^{\alpha+1}\right)
$$

Example
Solve,

$$
f(x)=x^{3}-2 x^{2}+3 x+4=0 \operatorname{mad} 27
$$

$(\bmod 3)$

$$
x \equiv 0, x \equiv 2
$$

solutions (mod 3)
$(\bmod 4)$

$$
\begin{aligned}
& f(x)=x^{3}-2 x^{2}+3 x=0 \bmod 4 \\
& f^{\prime}(x)=3 x-4 x+3 \\
& x=0(\bmod 3) \\
& \left.f^{\prime}(0)=3 \text { so } 3\right) f^{\prime}(0)
\end{aligned}
$$

$x=0$ is also a solutes $(\bmod q)$
Hence, 0 tit is ales a saliva (nod 9)
for each t. We have 0,3,6

$$
x \equiv 2 \quad f^{\prime}(2)=7 \quad 3+f^{\prime}(2)
$$

Find t st $t f^{\prime}(2)=\frac{-f(2)}{3}(\bmod 3)$

$$
\begin{aligned}
& 7 t=\frac{-15}{3}=-5(\bmod 3) \\
& t=1(\bmod 3)
\end{aligned}
$$

Herve, $2+1 \cdot 3=5$ is a soluter $(\bmod$ q) For eenh solution $0,3,5,6$ (mod 2) we work ys ior (mod 27)

$$
\begin{aligned}
& f(x)=x^{3}-2 x^{2}+3 x+4 \\
& f^{\prime}(0)=3 x^{2}-4 x+3 \\
& x \equiv 0 \quad f^{\prime}(0)=3,3 / f^{\prime}(0)
\end{aligned}
$$

Howener $f(0) \neq 0($ mocl 27$)$
NO SOLUTIONS
$x \equiv 3$ in ths case $3 / f^{\prime}(3)$ and $f(3)=0(\bmod 27)$ so we hove solutters $3,3+4,3+18$,
w 3,12,21 salutiens mod 27
$x \equiv 6$ No saluts
$\forall \equiv 5$ has a unique salutom

Defmitren

- Any solution $f: N \rightarrow \mathbb{R}$ is called withmeta

An crithmets furcten of is called multyplzatur if

$$
f(n m)=f(n) f(m)
$$

when $(n, m)=1$
$\mu(n)$ molius fonction
$\pi(n) \not \#$ of prines s_{n}
$\varphi(n)$ If af numbys co prime $\tau(n) \not \approx$ of divisers of n
$w(n) \#$ of prome divizers of n $\sigma(n)$ sum of div.3ors of n
d

$$
\begin{aligned}
& C(1)=1 \\
& C(2)=1 \\
& C(3)=2 \\
& C(4)=2 \\
& C(5)=4 \\
& C(6)=2 \\
& C(p)=p-1
\end{aligned}
$$

Defintren
If a is copime of n the so one cl(n) equiratenio clases co primio thichn. Ang set of $\mathrm{Cl}(\mathrm{n})$ vesidurs which oybe, poirwise ingongruent fordaln) io called a n, eelueed set of residues (modn)
Wheorem
If $a_{1}, \ldots . a_{p(n)}$, io, a reclured set alt residues $(\bmod n)^{a}$ and $(u, n)^{n}=1$,

$$
K_{a_{1}}, \ldots, K_{a_{Q(a)}}
$$

is also a reeluced set of residues (nooln)
Eulers Theorem
Let $n \in \mathbb{N} \backslash\{1\}, a \in \mathbb{Z},(a, n)=1$, Then

$$
a^{d(n)} \equiv 1(\bmod n)
$$

Proef
Lef $r_{1}, \ldots, r_{d(n)}$ he a recluced sef
af yesidues (modn) thes $a_{n}, \ldots, a r_{\text {aln }}$, io allo saih a set. Thus

$$
\begin{aligned}
& a n_{1} \ldots a r_{(\rho)} \equiv n_{1} \ldots \ldots n_{d(n)}(\operatorname{mad} n) \\
& \Rightarrow a^{L_{(n)}} \equiv 1(\bmod n)
\end{aligned}
$$

Corallery - Fermuts Litto Theerem
Let p be a prime and $a \in \mathbb{Z},(a, p)=1$

$$
a^{p-1}=1(\bmod p)
$$

Also

$$
a^{p} \equiv a(\bmod p), \quad \forall a \in \mathbb{Z}
$$

Enverses
Soppose $(a, n)=1$

$$
\begin{aligned}
& a^{Q(n)} \equiv 1(\bmod n) \\
& a \underbrace{a^{Q(n)-1}}_{\text {invase }} \equiv 1(\bmod n)
\end{aligned}
$$

Example
$3^{2000000}(\operatorname{mad} 31)$

$$
\begin{gathered}
2000000=30 q+r_{1} \\
q=66666 \\
r=20 \\
Q(3))=30
\end{gathered}
$$

We Knew $3^{30} \equiv 1($ mod 31)

$$
\begin{aligned}
3^{10^{6}} & =\left(3^{30}\right)^{60666} 3^{20}(\bmod 31) \\
& =3^{30}(\bmod 31)
\end{aligned}
$$

Fury
If p is prime what is

$$
Q\left(p^{t}\right)=p^{t}-p^{t-1}
$$

Theorem
syycare fine is critameter and

$$
F(n)=\sum_{d / n} f(d)
$$

If $f F_{\text {is }}$ maltplicatur then so
proof
We need it shan $F(m n)=F(m) F(n)$ when $(m, n)=1$

$$
F(m n)=\sum_{d / m} f(d)
$$

If $d / m n$ and $(m, n)=1$ then we con write $d=d_{1} d_{2}$ st

$$
\begin{aligned}
& d_{1} / m, d_{2} / n \quad\left(d_{1}, d_{2}\right)=1 \\
& F(n n)=\sum_{\substack{d_{1} m \\
d_{2} / n}} f\left(d_{1} d_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{d_{1} m \\
d_{2} / n}} f\left(d_{1}\right) f\left(d_{2}\right) \\
& =\sum_{d_{1 / m}} f\left(d_{1}\right) \sum_{d_{2} / n} f\left(l_{2}\right) \\
& =F(m) F(n)
\end{aligned}
$$

Lemma
τ and σ are mulbiplica
Formulae fer τ and σ
Let $n=\prod_{n=1}^{t} p_{i}^{a_{i}}$
Then $\quad \tau(n)=\tau\left(\prod_{n=1}^{t} p_{i}^{\alpha_{i}}\right)$

$$
=\prod_{i=1}^{t} \tau\left(p_{i}^{\alpha_{i}}\right)
$$

Similarly

$$
\sigma(n)=\prod_{i=1}^{t} \sigma\left(p_{c}^{\alpha_{i}}\right)
$$

Let p be prime

$$
\begin{aligned}
& \tau\left(\rho^{u}\right), \sigma\left(p^{u}\right) \\
& \tau\left(r^{u}\right)=u+1
\end{aligned}
$$

and $\tau(n)=\prod_{i=1}^{t} \tau\left(p_{i}^{\alpha_{i}}\right)$

$$
=\prod_{i=1}^{t}\left(\alpha_{i}+1\right)
$$

$$
\begin{aligned}
\sigma\left(p^{n}\right) & =1+p+p^{n}+\ldots+p^{n} \\
& =\frac{p^{n+1}-1}{p-1}
\end{aligned}
$$

$$
\sigma(n)=\prod_{i=1}^{q} \frac{f_{i}^{\alpha_{i}+1}-1}{\rho_{i}-1}
$$

Fail t
Cl as nalbiplicatno
Let $m, n \in \mathbb{N}, \quad(m, n)=1$

1	$m+1$	\cdots
2	$m+2$	$\cdots-1) m+1$
3	\vdots	\vdots
4	\vdots	\vdots
1	\vdots	\vdots
1	\vdots	$2 m$

Consider the $r^{\text {its }}$ row.
if $(m, r)=d>1$
then no element of an the ar if co prime in and the in are

We orb need Do consider caus inhere $(n, r)=1$. There are $\ell(n)$ sech rows.

Q(n) multiplizatres contonivel

$$
\begin{aligned}
& 1 m+1 \ldots(n-1) m+1)
\end{aligned}
$$

$$
\begin{array}{ccc}
2 & \vdots & \vdots \\
\vdots & m+n \cdots-\cdots+(n-1) m+u & i
\end{array}
$$

Talke $r^{\text {th }}$ row $(u, m)=1$

$$
n, m+n, 2 m+n, \ldots,(n-1) m+r
$$

Thase numbes ofe parmuse inicongruent (mod n)
If. $i m+r \equiv j m+r$ (mod n) then $f_{i}=j(\bmod a)$. Ths a a complett set of vesidus (mod n)
Thus tane ae $\varphi(n)$ element coprime to n (and also co prime a m
Thus, ftore we $\mathscr{C}(m) Q(n)$ elemests cop-me of mu
n) $Q(m n)=C l(m) C l(n)$
and d is multiplizaboos
Frmulave for e We knew

$$
Q\left(p^{n}\right)=p^{n}-p^{n-1}=p^{n-1}(p-1)
$$

wher p a príme

$$
\text { If } n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}, \begin{aligned}
\ell(n) & =\prod_{i=1}^{t} \varphi\left(p_{i}^{\alpha_{i}}\right) \\
& =\prod_{i=1}^{t} p_{i}^{\alpha_{i}}\left(1-\frac{1}{p_{i}}\right) \\
& =n \prod_{i=1}^{t}\left(1-\frac{1}{p_{i}}\right)
\end{aligned}
$$

Lemma
Either $C(n)=1$ or $\ell(n)$ is even.
Nefmintren
A number n is perfect of \mathscr{D} io
other sum of its
are leviers which
6, $28,496,8128$ are ont a perfect numbers $<10^{6}$
It as unknown of ode parent numbers exist

So haver been ty fund perfect number have been found.
Conjecture - Thee are pifimitat many
Definition
$P_{\text {is }}$ at also prime nne primo of $2^{p}-1$

It in unkncun if there r ore So for only 48 hove been found

Theorem
A natewn number n is perfect and even of iP has the form

$$
n=2^{p-1}\left(2^{p}-1\right)
$$

where bots p and $2^{p}-1$ we prime, ω excutt one perfect number associated with each norsenne prime
Prof
Suppose $\quad n=2^{p-1}\left(2^{p}-1\right)$
where $2^{p}-1$ at pome
($\Rightarrow p$ is prime)
We need to show n is perfect θ, o

$$
\sigma(n)=2 n
$$

The dirizas of n we

$$
\begin{aligned}
& 1,2, \cdots, 2^{p-1}, \\
& \left(2^{n}-1\right), 2\left(2^{p}-1\right), \ldots, 2^{n-1}\left(2^{n-1}\right) \\
& 1+2+\ldots 2^{n-1}=2^{p}-1
\end{aligned}
$$

$\therefore \quad \sigma(n)=2^{p}-1+\left(2^{p}-1\right)^{2}$

$$
\begin{aligned}
& =\left(2^{p}-1\right)\left(1+2^{n}-1\right) \\
& =2^{p}\left(2^{p}-1\right)=2 n
\end{aligned}
$$

Now suppose

$$
\sigma(n)=2 n
$$

We reed to show n it of from form

$$
2^{p-1}\left(2^{n-1}\right)
$$

Whee 2^{n-1} and p are prime. We can write

$$
n=2^{n-1} n^{\prime} \quad \text { where } n^{\prime} \text {, s odd }
$$

We here $\sigma(n)=\sigma\left(2^{n-1}\right) \sigma\left(n^{\prime}\right)$
Also $\sigma(n)=2 n=2^{n} n$ '
Thus $2^{4} n^{\prime}=\left(2^{u}-1\right) \sigma\left(n^{\prime}\right)$
We have

$$
2^{n}-1 / n^{\prime}
$$

We can write

$$
n^{\prime}=\left(2^{n}-1\right) n^{\prime \prime}
$$

This gives

$$
\sigma\left(n^{\prime}\right)=2^{n} n^{\prime \prime}
$$

Notes that

$$
\begin{aligned}
n^{\prime}+n^{\prime \prime} & =\left(2^{u}-1\right) n^{\prime \prime}+n^{\prime \prime} \\
& =2^{n} n^{\prime \prime}=\sigma\left(n^{\prime}\right)
\end{aligned}
$$

This implies $n^{\prime \prime}=/$ and n^{\prime} is prime Thus $n^{\prime}=2^{n}-1$ prime and $n=2^{k-1}\left(2^{n}-1\right)$ as required

The Molies Fundten
(1) $\mu(1)=1$
(2) If \exists prome p st

$$
p^{2} / n \text { then } \mu(n)=0
$$

(3) Otheriniso

$$
n=\prod_{i=1}^{t} p_{i} \quad, p_{i} \text { prime, } p_{i}^{7} p_{j}, i^{-7}
$$

Then $\mu(n)=(-1)^{t}$

$$
\begin{aligned}
& \mu(1)=1 \\
& \mu(2)=-1 \\
& \mu(3)=-1 \\
& \mu(4)=0 \\
& \mu(5)=-1 \\
& \mu(6)=1
\end{aligned}
$$

μ is nulbiplizatwe

Lemma

$$
\sum_{d l n} \mu(d)= \begin{cases}1 & \text { of } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $F(n)=\sum_{\text {din }} \mu(d)$
As μ i mulbipliatoro so if F Let p be prime

$$
\begin{aligned}
F\left(p^{u}\right) & =\sum_{d p^{4}} \mu(d) \\
& =\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\ldots+\mu\left(p^{4}\right) \\
& =1-1+0 \\
& =0
\end{aligned}
$$

Molius Enversion Envaula.
Leb $f: \mathbb{N} \rightarrow \mathbb{R}$ and

$$
F(n)=\sum_{d / n} f(n)
$$

Then

$$
\begin{aligned}
f(a) & =\sum_{d / \eta} F(d) \mu\left(\frac{n}{d}\right) \\
& =\sum_{d / n} F\left(\frac{n}{d}\right) \mu(d)
\end{aligned}
$$

forf
Consder

$$
\begin{aligned}
& \sum_{d d n} \mu(d) F\left(\frac{n}{d}\right) \\
& =\sum_{d d_{2}=n} \mu\left(d_{1}\right) F\left(d_{2}\right) \\
& =\sum_{d d_{2}=n} \mu\left(d_{1}\right) \sum_{d / d_{2}} f(d) \\
& =\sum_{d d_{\|} n} \mu\left(d_{1}\right) f(d)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d / n} f(d) \underbrace{\sum_{d / \frac{n}{a}} \mu\left(d_{1}\right)}_{=1 \text { in } n=d} \\
& \\
& =f(n) \quad \text { attranse } 0
\end{aligned}
$$

Lemman

$$
\sum_{d / n} \varphi(d)=n \quad\left(\sum_{d / n} \varphi\left(\frac{n}{d}\right)=n\right)
$$

Cuafley
Q is multyplizalion

Notoro that

$$
\begin{aligned}
\sum_{d / n} \# & \{a \in\{1, \ldots, n\} \mid(a, n)=d\} \\
& =n
\end{aligned}
$$

We have

$$
\begin{aligned}
\varphi\left(\frac{n}{a}\right) & =\#\left\{\left.a \in\left\{1, \ldots, \frac{n}{u}\right\} \right\rvert\,\left(a, \frac{1}{a}\right)=1\right\} \\
\text { E.use } \rightarrow & =\#\{a \in\{1, \ldots, n\} \mid(a, n)=d\}
\end{aligned}
$$

Also $\varphi(n)=n \sum_{d / n} \mu(d) \leftarrow$ Encaice
sego of exa inthmetu fanctions Notatien $0, \leftarrow$
we say $f(x)=O(g(x)$ or

$$
f(x) \ll y(0 \quad \text { if } \quad \exists C
$$

st $f(x) \leqslant C g(x)$ for all espropiento x
If $f(x) \ll g(x) \leftrightarrow f(x)$
we seng say $f(x) \fallingdotseq g(n)$
comparable

Example

$$
\begin{aligned}
& x^{2}=O\left(x^{2}+x\right) \quad x \in[1, \infty) \\
& x^{2}+x=O\left(x^{2}\right)
\end{aligned}
$$

$\tau(n), \#$ of duress of n

$$
\begin{aligned}
& \operatorname{limif}_{n \rightarrow \infty} \tau(n)=2 \\
& 60=2^{2} \cdot 3 \cdot 5 \\
& \tau(60)=3 \cdot 2 \cdot 2=12
\end{aligned}
$$

$\tau(n)$ can be legs then any pome if $(\log n)$
Let $a \in \mathbb{R}^{+}$, then $\exists \mathrm{n}$ st

$$
\tau(n) \gg(\log n)^{\alpha}
$$

Consider $n=2^{m}$ so $t(n)=m+1$

$$
\log n=m \log 2
$$

$$
\begin{gathered}
m=\frac{\log n}{\log 2} \\
m+1 \approx \frac{\log n}{\log 2}
\end{gathered}
$$

Censider ivelead

$$
\begin{gathered}
n=(2 \cdot 3)^{m}, \tau(n)=(n+1)^{2} \\
\log n=m \log G \\
m=\frac{\log n}{\log 6} \\
\tau(n)=(m+1)^{2} \approx\left(\frac{\log n}{\log 6}\right)^{2}
\end{gathered}
$$

Theerem

$$
\tau(n) \ll n^{\delta} \quad \forall \quad \delta>0
$$

Lemma
Let f be multialization such

$$
f\left(p^{\alpha}\right) \longrightarrow 0
$$

as $p^{\alpha} \longrightarrow \infty$ for p prome
Then $f(x) \longrightarrow 0$ as $a \longrightarrow \infty$

Prooff of Camma
Suppose $f\left(f^{\alpha}\right) \longrightarrow 0$ as $p^{\alpha} \longrightarrow \infty$ whs inplies
(1) $\exists A \in \mathbb{R}$ st $\left|f\left(p^{\alpha}\right)\right|<A$
(2) $\exists B \in \mathbb{R}$ st $\left|B\left(p^{\alpha}\right)\right|<1 \quad p^{\alpha}>\beta$
(3) $\forall \varepsilon>0, \exists N_{\varepsilon}$ st

$$
\left|f\left(p^{\alpha}\right)\right|<\varepsilon, \quad p^{\alpha}>N_{\varepsilon}
$$

Let $n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}}$
so $f(n)=\prod_{i=1}^{t} f\left(p_{i}^{\alpha_{i}}\right)$
A finite number, C, of element p^{α}
Hence, $f(n) \leqslant A^{c}$
For $\varepsilon>0$ as $n \vec{\rightarrow} \rightarrow \infty$, eventually n will have a fouler $\rho^{\alpha}>N_{\varepsilon}$ so

$$
f(n) \leq \varepsilon A^{c}
$$

Thus $f(n) \longrightarrow 0$ as $n \longrightarrow \infty$
Proof of Theorem

$$
f(n)=n^{-\delta_{\tau}}(n)
$$

so of it malt-plizative
We hove $f\left(p^{\alpha}\right)=p^{-\alpha \delta} \tau\left(p^{\alpha}\right)$

$$
=(\alpha+1) p^{-\alpha \delta}
$$

Hence

$$
\begin{aligned}
f\left(p^{\alpha}\right) & \leq \frac{2 \alpha}{p^{\alpha \delta}}=\frac{2}{p^{\alpha \delta}} \frac{\log p^{\alpha}}{\log p} \\
& \leq \frac{\alpha}{\log \alpha} \frac{\log \left(p^{\alpha}\right)}{\left(p^{\alpha}\right)^{s}} \longrightarrow 0 \text { as } p^{\alpha} \longrightarrow \infty
\end{aligned}
$$

Hence $f(n) \longrightarrow 0$ as $n \longrightarrow \infty$
$\omega \tau(n) n^{-\delta} \longrightarrow 0$

$$
\Rightarrow \quad \tau(n) \ll n^{\delta}
$$

Average corder of τ ?

$$
\frac{1}{N} \sum_{n=1}^{N} \tau(n) \backsim \log N
$$

size of $\varphi(n)$?
Let $n=p^{m}$ then

$$
\begin{aligned}
U(n) & =n\left(1-\frac{1}{n}\right) \\
& >n(1-\varepsilon) \text { for } \rho \text { salfirients lave }
\end{aligned}
$$

Alw, $\frac{d(n)}{n^{1-s}} \longrightarrow \infty$ as $n \longrightarrow \infty$
Average acle?
Lef $\bar{Q}(N)=\sum_{n=1}^{N} \mathbb{Q}(n)$

Theorem

$$
\mathscr{Q}(N)=\frac{3 N^{2}}{\pi^{2}}+O(N \log N)
$$

$$
\sum_{i=1}^{n} \varphi(n)=\sum_{i=1}^{n} \sum_{d / i} \frac{i \mu(l)}{d}
$$

Let $d^{\prime}=\frac{i}{d}$

$$
\begin{aligned}
& =\sum_{d d^{\prime} \leq n} d^{\prime} \mu(d) \\
& =\sum_{d=1}^{n} \mu(d) \sum_{d^{\prime}=1}^{\left[\frac{n}{n}\right]} d^{\prime} \\
& =\frac{1}{2} \sum_{d^{\prime}=1}^{n} \mu(d)\left(\left[\frac{n}{d}\right]^{2}-\left[\frac{n}{d}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{d=1}^{n} \mu(d)\left(\frac{n^{2}}{d^{2}}+O\left(\left[\frac{n}{d}\right]\right)\right) \\
& =\frac{1}{2} n^{2} \sum_{d=1}^{n} \frac{\mu\left(\frac{d)}{d^{2}}+O\left(n \sum_{d=1}^{n} \frac{1}{d}\right)\right.}{}=0.0 \text {. }
\end{aligned}
$$

Lemma

$$
\sum_{n=1}^{\infty} \frac{1}{n^{5}} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{2}}=1, s>1
$$

Loef
Censeler

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{s}} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{s}} \\
= & \sum_{m=1}^{\infty} \frac{\mu(m)}{(m n)^{s}} \\
= & \sum_{i=1}^{\infty} \frac{1}{i^{s}} \sum_{d / i} \mu(d) \\
= & 1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} n^{2} \sum_{d=1}^{n} \frac{\mu(d)}{d^{2}}+O\left(n \sum_{d=1}^{n} \frac{1}{d}\right) \\
& =\frac{1}{2} n^{2}\left(\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}-\sum_{d=n+1}^{\infty} \frac{\mu(d)}{d^{2}}\right)+O(n \log n) \\
& =\underbrace{\frac{3 n^{2}}{\pi^{2}}}+n^{2} O\left(\int_{n=1}^{\infty} \frac{d x}{x^{2}}\right)+\theta(n \log n) \\
& =\frac{3 n^{2}}{\pi^{2}}+O(n \log n) \text { as requed }
\end{aligned}
$$

Seg of $\pi(n)$?
Lemma
Lit $n>1$, and far ewh prome p defme 'n (1) at he sot nigue interger sula

$$
p^{n(\varphi)} \leqslant 2 n \leqslant p^{r(\varphi)+1}
$$

The fallewing hold
(1) $2^{n} \leqslant\binom{ 2 n}{n} \leq 2^{2 n}$
(2) $\prod_{n<p<2 n} p /\binom{2 n}{n}$
(3) $\left.\binom{2 n}{n} \right\rvert\, \prod_{p=2 n} p^{r(p)}$
(4) If $n>2$ and $\frac{2 n}{3}<p \leq n$ then

$$
p f\binom{2 n}{n}
$$

(5) $\prod_{p \leq n} p<4^{n}$

Chelycher's Theorem
For $n>1$,
lane numb

$$
\begin{aligned}
& \frac{n}{8 \log n} \leqslant \pi(n) \leqslant \frac{6 n}{\log n} \\
& x(n){ }^{n} \frac{n}{\log n} \\
& n^{-(2 n)-m(n)}<\prod_{n \leq p<2 n} p \leqslant\binom{ 2 n}{n} \\
& \leqslant \prod_{p=2_{n}} p^{n(n)} \\
& \leq(2 n)^{\pi(2 n)}
\end{aligned}
$$

From port , we hove

$$
\begin{aligned}
& n^{\pi(2 n)-\pi(n)} \leqslant 2^{2 n} \\
& 2^{n} \leqslant(2 n)^{\pi(2 n)}
\end{aligned}
$$

Now let $n=2^{k}$
Then $u\left(\bar{n}\left(2^{k+1}\right)-\bar{n}\left(2^{k}\right)\right) \leq 2^{k+1}$ and $2^{k} \leqslant(k+1) \pi\left(2^{k+1}\right)$

We alse hure

$$
\pi\left(2^{u+1}\right) \leq 2^{u}
$$

Then

$$
\begin{aligned}
& (n+1) \pi\left(2^{n+1}\right)-k \pi\left(2^{k}\right) \\
& \leqslant 2^{n+1}+2^{k}=3 \cdot 2^{k}
\end{aligned}
$$

Ths imphies

$$
\begin{aligned}
&(u+1) \pi\left(2^{n+1}\right)-k \pi\left(2^{k}\right)+k \pi\left(2^{n}\right)-(k-1) \pi\left(2^{n-1}\right) \\
&+\ldots+\pi(2)-\pi(1) \\
&<3\left(2^{n}+2^{n-1}+2^{n-2}+\ldots+1\right) \\
&=3 \cdot 2^{n+1}
\end{aligned}
$$

Hence

$$
\frac{2^{n+1}}{2(u+1)} \int_{\text {fram }(2)} \pi\left(2^{n+1}\right) \leq \frac{3 \cdot 2^{n+1}}{k+1}
$$

Rename $U=m$

$$
\frac{2^{m+1}}{2(m+1)}<\pi\left(2^{m+1}\right)<\frac{3 \cdot 2^{m+1}}{m+1} \quad \pi\left(2^{n}\right) \curvearrowleft \frac{2^{n}}{\operatorname{tag}^{n}\left(2^{n}\right)}
$$

Now consider general $n \in \mathbb{N}$
Choose m such that

$$
2^{m+1} \leq n<2^{m+2}
$$

Nod that

$$
\frac{u}{2} \leq \log \left(2^{u}\right) \leq k
$$

Also nod that $\bar{\pi}(n)$ is a non decreasing function

$$
\begin{aligned}
\pi(n) & <\pi\left(2^{m+2}\right) \\
& <\frac{3-2^{m+2}}{m+2}
\end{aligned}
$$

As. ale

$$
\begin{aligned}
& \frac{2^{m+1}}{2(m+1)}<\pi\left(2^{m+1}\right)<\frac{3 \cdot 2^{m+1}}{m+1} \\
& <\frac{6 \cdot 2^{m+1}}{\log \left(2^{m+2}\right)}<\frac{6 n}{\log n}
\end{aligned}
$$

Also

$$
\begin{aligned}
\pi(n) & >\pi\left(2^{m+1}\right) \\
& >\frac{2^{m+1}}{2(m+1)}=\frac{2^{m+2}}{8\left(\frac{m+2}{2}\right)} \\
& >\frac{n}{8 \log \left(2^{m+1}\right)} \\
& >\frac{n}{8 \log n}
\end{aligned}
$$

Corallay
$P_{n} \cup n \log n$
Bertand's Postutato
If $n \in \mathbb{N}, \exists$ prme

$$
n<p \leq 2 n
$$

Quashothe Residues
Let $a, b, c \in \mathbb{Z}$. When does 荡 congruence, witt p prime

$$
a x^{2}+b x+c=0(\bmod p)
$$

have solutions?
Sucrose wog $(a, p)=1$
Ales suysore p is old
If $(a, p)=1$ then $(4 a, p)=1$
Then

$$
a x^{2}+b x+c \equiv 0(\bmod p)
$$

hes saluted ry

$$
\begin{aligned}
& 4 a^{2} x^{2}+4 a b x+4 a c \equiv 0(\bmod / /) \\
& (2 a x+l)^{2}-b^{2}+4 a c=0(\bmod \rho)
\end{aligned}
$$

Let

$$
\begin{aligned}
& y=2 a x+b \\
& d=b^{2}-4 a c
\end{aligned}
$$

The question then become
when does

$$
y^{2} \equiv d(\bmod p)
$$

hove solutsens?
Difinithen
If $x^{2} \equiv$ a frodp) has a solitten cesidue of suy, a is a a quactitet cesilue of A, the inter a
quadrata a

Example

$$
\begin{aligned}
& p=7 \\
& 1^{2} \equiv 1(\bmod 7) \\
& 2^{2} \equiv 4(\bmod 7) \\
& 3^{2} \equiv 9 \quad(\bmod 7) \\
& 4^{2} \equiv(-3)^{2} \equiv 2(\bmod 7) \\
& 5^{2} \equiv(-2)^{2} \equiv 4(\bmod 7) \\
& 6^{2} \equiv(-1)^{2} \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

The quadtath non residues of 7 are $1,2,4$ and 伆 suadrater non vesiclues ore $3,5,6$
Euler's Citenon
Let x^{\prime} be an odd prime. Let $a \in \mathbb{Z}$, $(a, p)=1$. Then a is a quacbaté resclue of p

$$
a^{p \frac{p}{2}} \equiv 1(\bmod p)
$$

proel
Saypose $a{ }^{i}$ a quectruter residue of p,

$$
x^{2} \equiv a(\bmod p)
$$

We have

$$
\begin{aligned}
& a^{\frac{p-1}{2}} \equiv\left(x^{2}\right)^{\frac{p-1}{2}} \equiv x^{p^{-1}}(\bmod p) \\
& =1(\bmod p) \\
& \begin{array}{l}
\text { Liturest } \\
\text { Litherenem }
\end{array}
\end{aligned}
$$

Wilen's Theorem

$$
(p-1)!\equiv-1(\bmod p)
$$

7 Now suppose a is not a quadrate reside of p
For each $c \in\left\{1, \ldots, p^{-1}\right\}$

$$
\exists \quad c^{\prime} \in\left\{1, \ldots, p^{-1}\right\}
$$

st $c c^{\prime}=a(\bmod p)$
and $c \neq c^{\prime}$
Hence

$$
1 \cdot 2 \cdot 3 \cdot \ldots \cdot(p-1) \equiv a^{\frac{p-1}{2}}(\bmod p)
$$

By Wilkes fitenton a io not a residue of p, then

$$
a^{\frac{p-1}{2}} \equiv-1(\bmod p)
$$

Example
Can we solve $x^{2} \equiv 3(\operatorname{mol} 31)$?
Eula's Criterion

$$
3^{15}(\bmod 31)
$$

$$
\begin{aligned}
3 & \equiv \rho(\bmod 31) \\
3^{2} & \equiv 9(\bmod 31) \\
3^{4} & \equiv 81 \equiv 19=-12(\bmod 3)) \\
3^{8} & \equiv 144 \equiv 20 \equiv-11(\bmod 31) \\
3^{15} & =3^{8} 3^{4} 3^{2} 3^{1} \\
& \equiv(-11)(-12)(-4) \\
& \equiv 13(-12) \\
& \equiv-1 \bmod (31) \text { NOD }
\end{aligned}
$$

Leyenclre Symbal
Let P be un odd prome onel $(a, p)=1$, the legendre symbal

$$
\left(\frac{a}{p}\right)
$$

so defmeal us

$$
\left(\frac{u}{p}\right)= \begin{cases}1 & \text { if a is a suactioto } \\ -1 & \text { othidue of } p\end{cases}
$$

Thewem
Lst p
$(a, p)^{l}=(l, p)=1$ an odd then
(1) If $a=b($ nod $p)$

$$
\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)
$$

(2) $\left(\frac{a^{2}}{p}\right)=1$
(3) $\left(\frac{a}{p}\right) \equiv a^{\frac{p^{-1}}{2}}(\bmod p)$
(4) $\left(\frac{a l}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
(5) $\left(\frac{1}{p}\right)=1,\left(-\frac{1}{p}\right)=(-1)^{\frac{p_{2}^{1}}{1}}$
(6) $\left(\frac{a \cdot b^{2}}{p}\right)=\left(\frac{a}{p}\right)$

Cardery
If p is on old prome thes

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{cc}
1 & \text { if } p \equiv 1(\bmod 4) \\
-1 & \text { if } p \equiv 3(\text { mod } 4)
\end{array}\right.
$$

Poof

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}
$$

Completton exarcse
Example
Con we solve $x^{2}=-84(\bmod 31)$?

$$
\begin{aligned}
\left(\frac{-84}{31}\right) & =\left(\frac{-1}{31}\right)\left(\frac{4}{31}\right)\left(\frac{7}{31}\right)\left(\frac{3}{31}\right) \\
& =-\left(\frac{21}{31}\right)
\end{aligned}
$$

Theoren
There we winity moyy proues
lagef
Sugzose THAD se finitet ancry swh primes $p_{1} \ldots p_{t}$. Consider

$$
\begin{aligned}
& N=4 p_{1}^{2} p_{2}^{2} \ldots p_{t}^{2}+1 \\
& N \equiv 1(\bmod 4), N>p_{i}, i=1, \ldots, t
\end{aligned}
$$

Thus, N is compesito and 7 p prime st p / N. It should be clear perex $p \neq p_{i}, i=1, \ldots, t$
We have $N \equiv O$ modp
$\omega \quad 4 p_{1}^{2} \ldots p_{t}^{2} \equiv-1(\bmod p)$
Thus

$$
\left(\frac{-1}{p}\right)=1 \Rightarrow p \equiv 1(\bmod 4)
$$

a controdictin. Thus Ewod ce Ifmiteb moy primes of ter form $4 k+1$.

Prmien Roots
Remember of $(a, n)=1$ then

$$
a^{Q(n)} \equiv 1(\bmod n)
$$

Nelunituon
The orde of náf noulv a (modn)
 such that

$$
a^{d} \equiv 1(\bmod n)
$$

If $d=\varphi_{1}(n)$, the
 ther a promitare nooid of a primg the if $^{2}, \ldots$, resines (mod p)
$\operatorname{crd}_{n} a=$ order of $a(\bmod n)$

Theorem
If $\operatorname{ard}_{n} a=d$ then $d / C(n)$
Proof
From tho derision algorithm \exists lis $\subset \mathbb{N}$ st

$$
\begin{aligned}
& d(n)=b d+c \quad 0 \leq c<d \\
& 1 \equiv a^{\ell(n)}=a^{l d+c}=\left(a^{d}\right)^{b} a^{c} \equiv a^{c}(\text { mod } n)
\end{aligned}
$$

This catraidicto $d=\operatorname{col}_{n} u$, Therefore $c=0$ and $d / Q(n)$

Example
Let $p=17, C(p)=16$
possible uncles are $1,2,4,8,16$

$$
\begin{array}{rlrl}
2 & \equiv 2(\bmod 17) & \left.2^{8}=1 \text { frat } 17\right) \\
2^{2} & \equiv 4 & 2 \text { is not a primates } \\
2^{4} & \equiv-1 & \cos 8 \text { of } 17
\end{array}
$$

$$
\begin{aligned}
& 3 \equiv 3(\bmod 17) \\
& 3^{2} \equiv 9 \equiv-8 \\
& 3^{4} \equiv 64 \equiv-4 \\
& 3^{8} \equiv 16=-1 \\
& 3^{16} \equiv 1 \Rightarrow 3 \text { in a pumitme } \quad \Rightarrow 17
\end{aligned}
$$

Layrangu's Theovem
Lef $f \in \mathbb{Z}[x]$

$$
f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \quad a_{i} \in \mathbb{Z}
$$

Let p be a poime, $\left(a_{n}, p\right)=1$
Then of has p) af most in incengruest
roots (mod p)
Proef (by incluction)

$$
n=1 \quad a_{1} x+a_{0}=0(\bmod p) \quad\left(a_{1}, p\right)=1
$$

This has a enque solutien (mod p)

Supnose 战 statement halelfs fo $n=k$ io a $k^{\text {th }}$ deyreee palgrimial hes (mod p) maximum of K inongruent noots Comsider $f(x)=a_{u+1} x^{4+1}+\ldots+a_{1} x+a_{0}$

$$
\left(a_{k+1}, p\right)=1
$$

Assume If has $K+2$ inconguent noots (med p) and creer are

$$
c_{0}, c_{1}, c_{2}, \ldots, c_{n+1}
$$

We hove

$$
\begin{aligned}
f(x)-f\left(c_{0}\right)= & a_{n+1}\left(x^{k+1}-c_{0}^{k+1}\right)+\ldots . \\
& \ldots+a_{1}\left(x-c_{0}\right) \\
= & \left(x-c_{0}\right) y(x)
\end{aligned}
$$

where g to has clegree af moit K

$$
\begin{gathered}
O\left(\operatorname{mad}_{p}\right)=f\left(c_{i}\right)-f\left(c_{0}\right)=\left(c_{i}-c_{0}\right) g\left(c_{i}\right) \\
(\operatorname{mad} p)
\end{gathered}
$$

Thus

$$
g\left(c_{i}\right) \equiv 0 \quad \text { for } \quad i=1, \ldots, k_{T} \mid
$$

Centrachit it inclusion espotheres

Lemma
Let p be prime, $a \in \mathbb{Z},(u, p)=1$
Let ordpa $=d$ and $u \in \mathbb{N}$, Then

$$
\operatorname{crcl}_{p}\left(a^{n}\right)=\frac{d}{(d, u)}
$$

Leaf
Let $t=\operatorname{ardp}_{p}\left(a^{u}\right)$
Let $h=\operatorname{gcd}(d, u)$
then we cen unit

$$
\begin{array}{ll}
d=h d_{1} & \left(u_{1}, d_{1}\right)=1 \\
u=h u, &
\end{array}
$$

Then

$$
\left(a^{u}\right)^{d_{1}}=\left(a^{h u}\right)^{d^{\frac{d}{2}}}=\left(a^{d}\right)^{u_{1}} \equiv 1 \bmod p
$$

Hence t / d,
Also, $\left(a^{u}\right)^{t} \equiv 1 \bmod p$ by elefonition
Hence, d/ut
w d,h/u,ht
By Euclids lemma d./t
Therefore $\quad t=d_{1}=\frac{d}{(u, d)}$

Lemma
Let p be prime and sypose $d /(p-1)$ Then tex \# of integer of order d in mos set $\{1, \ldots, p-1\}$ is at
prove
Let $F(d)=\#\left\{a \in\{1, \ldots, p-1\} \mid \operatorname{ard}_{p} a=d\right\}$
If $F(d)=0$ then $F(d) \leqslant \varphi(d)$
Now suppose $F(d) \geqslant 1$ so $\exists a \in\left\{1, \ldots, p^{-1}\right\}$
st ordpa=d, io $a^{d} \equiv 1 \bmod p$ NoD that a, a^{2}, \ldots, a^{d} ore incongruent $(\bmod p)$
Also of $K=1, \ldots, d$ then

$$
\left(a^{u}\right)^{d} \equiv\left(a^{d}\right)^{u} \equiv 1(\bmod p)
$$

Thus for exch $K \in\{1, \ldots, d\}, a^{k}$ io a root of $x^{d}=1$ (mod)

By Lagronges theorem cero are Tie inly roots of this equation
By pron as lemma we know tex d a" has order a the $\left(u_{1} d\right)=1$ There ore eld) such Thus if Tease is one element of ode d Nerd ore $C($ (d) such elements

Hence, $F(d) \leq \varphi(d)$

Theorem
Let p be a prime with $d / p-1$. Let Feb) be as in enc lemma, then

$$
F(d)=d(d)
$$

Proof

$$
p-1=\sum_{d / p-1} F(d)
$$

We also have

$$
p^{-1}=\sum_{d / p-1} Q(d)
$$

$\omega \quad \sum_{d / p-1} \varphi\left((d)=\sum_{d / p=1} F(d)\right.$
Also from lemma $F(d) \leq C(d)$
Thus $F(d)=d(d)$ for $d / p-1$
Corollary
Every prime has a prided root

Theerem
If ρ is on oold prome, then

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=0
$$

is are $\frac{\rho_{2}-1}{2}$ quachadic residue of P and $\frac{p_{-1}}{2}$ quewtatir non resiclues of p
poof
Lef ${ }^{r}$ be a primituo coot of p so that $r, r^{2} \ldots, r^{r=1}$ form a campleto set of residues.
For ewh $a \in\{1, \ldots, p-1\} \exists u_{a} \in\{1, \ldots, p-1\}$ sunh that

$$
r^{u_{a}} \equiv a\left(\operatorname{mal} l_{p}\right)
$$

$$
\begin{aligned}
& \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv\left(r^{n_{a}}\right)^{p^{\frac{p-1}{2}}} \equiv\left(r^{\frac{p-1}{2}}\right)^{r_{a}}=(-1)^{r_{a}} \\
& \therefore \sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=\sum_{a=1}^{p-1}(-1)^{u_{a}}=0
\end{aligned}
$$

Caroller
The quentater resolves of on old prime p ore congruent A Te even powers of a promista root of p

Games Lemma
Lit p^{r} be an ald pine and $a \in \mathbb{Z}$ $(a, p)^{r}=1$. Let t denote and number

$$
S=\left\{a, 2 a, 3 a, \ldots \frac{p-1}{2} a\right\}
$$

which have remainder g-eabe then $\frac{t}{2}$ after deism by ρ
Then $\left(\frac{a}{\rho}\right)=(-1)^{t}(\operatorname{mol} \rho)$

Prof
Consider $a, 2 a, \ldots, \frac{\rho-1}{2} a$
Let $r_{1,}, \ldots, r_{4}$ be romances which ore $c \frac{\rho_{n}}{2}$. Let $5, \ldots$. , st es be If emandeles which are $>\frac{s_{2}}{2}$

Now consider

$$
r_{1}, \ldots, r_{4}, p-s_{1}, \ldots, p-s_{t}
$$

If $n_{i} \equiv n_{j}($ mad $p)$ or $s_{i} \equiv s_{j}$ (nad)
then $\exists m_{i}=m_{j}(\bmod p), m_{i}, m_{j} \in\left\{1, \ldots, \frac{p^{-1}}{2}\right\}$
If $\exists i, j s t$

$$
r_{i}=p-s_{j}(\bmod p)
$$

then $r_{i}=-s ;(\bmod \rho)$
so $\exists m_{i}, m_{j} \in\left\{1, \ldots, p_{i}^{-1}\right\}$
st

$$
m_{i}+m_{j} \equiv O(\bmod)
$$

which is impossible
Here $\left\{r_{1}, \ldots, r_{4}, p-s_{1}, \ldots, p-s_{t}\right\}$

$$
=\left\{1,2, \ldots, \frac{p-1}{2}\right\}
$$

Therefore

$$
\begin{aligned}
& r_{1}, r_{2} \ldots r_{u}\left(p-s_{1}\right) \ldots\left(p-s_{t}\right) \\
& \equiv\left(\frac{p-1}{2}\right)!(\bmod p)
\end{aligned}
$$

Also

$$
\begin{aligned}
r_{1} \ldots r_{u} s_{1} \ldots s_{t} & \equiv a \cdot 2 a \cdot 3_{a} \cdot \ldots \cdot\left(\frac{p-1}{2}\right) a(\bmod p) \\
& =a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!(\bmod p) \\
> & \equiv(-1)^{t} r_{1} \ldots r_{k} s_{1} \ldots s_{t}
\end{aligned}
$$

Thus

$$
(-1)^{t} a^{\frac{p 1}{2}}\left(\frac{p-1}{2}\right)!\quad=\left(\frac{p-1}{2}\right)!(\text { mod } p)
$$

Thit g.ves $(-1)^{t} a^{\frac{p-1}{2}} \equiv 1(\bmod p)$

$$
a^{\frac{p-1}{2}} \equiv(-1)^{t}(\bmod \rho)
$$

Finally, ly Enta's Citeien
$\left(\frac{a}{p}\right)=a^{\frac{\frac{1}{2}}{2}}=(-1)^{t}(\bmod p)$ as requred

Theorem
P is an odd prime.

$$
\left(\frac{2}{p}\right)= \begin{cases}1 & p= \pm 1(\bmod 8) \\ -1 & p= \pm 3(\bmod 8)\end{cases}
$$

pref
Apply Cerous lemma with $a=2$ in this case

$$
\begin{aligned}
s & =\left\{a, 2 a, \ldots, \frac{p_{1}}{2} a\right\} \\
& =\left\{2,4, \ldots, p^{-1}\right\}
\end{aligned}
$$

How many elements of s ore $>\frac{f_{2}}{2}$
Suppose $2 u<\frac{p}{2}$

$$
\Rightarrow K \leq\left[\frac{p}{4}\right]
$$

Let $t=\frac{\rho^{-1}}{2}-\left[\frac{\rho}{4}\right]$

Example
Woy $x^{2} \equiv 2(\bmod I I)$ here soluteris?

$$
\left(\frac{2}{11}\right)=-1
$$

Quarlsatur Lam of neurpoai of
Let n, q be distuct oded primes. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left.\left(\frac{p-1}{2}\right) \frac{q-1}{2}\right)}
$$

Coralley 2 hohe

$$
\binom{p}{q}= \begin{cases}\left(\frac{q}{p}\right) & \gamma \\ p & \text { and } / \text { or } q=1(\bmod 4) \\ -\left(\frac{q}{p}\right) & \text { of } p \text { and } q=3 \operatorname{frod} 4)\end{cases}
$$

Corallery)

$$
\begin{aligned}
\left(\frac{p}{q}\right)\binom{q}{p}= & 1 \text { if } p \text { andfor } q \equiv 1(\operatorname{mad} 4) \\
& -1 \text { if bath } p, q \equiv 3(\bmod 4)
\end{aligned}
$$

(V.a ĒIenstons Lomma)

Let p be en adel prome and a on odd integer $(a, p)=1$. Then

$$
\left(\frac{a}{p}\right)=(-1)^{\left(\sum_{n=1}^{\alpha_{1}}\left[\frac{u_{a}}{p}\right]\right)}
$$

Loof
As in proof of bewes Lerma comider $a, 2 a, \ldots, \frac{1-1}{2} a$ and let r_{1}, \ldots, r_{n} denato $x_{i}, ~ r e m a n d e s ~$$\frac{f}{2}$ eftr
By Cox chision Algoithm,

$$
j a=p\left[\frac{j a}{p}\right]+\text { remaincler }
$$

$$
\begin{aligned}
& \text { T yheso we the } \\
& \text { r's and s's }
\end{aligned}
$$

Sum to altion

$$
\sum_{j=1}^{p_{i}+} j_{a}=p \sum_{j=1}^{p_{i}}\left[\frac{j a}{p}\right]+\sum_{i=1}^{n} \imath_{i}+\sum_{j=1}^{t} s_{j}^{\Theta}
$$

We already Unow from tex proof of Gaurs Lemma that $n_{1}, \ldots, r_{n}, p-s, \ldots, \rho^{-s_{r}}$
we the nantes $1,2, \ldots, \frac{f_{-1}}{2}$

$$
\begin{aligned}
& \sum_{j=1}^{\frac{p_{2}^{\prime}}{2}} j=\sum_{i=1}^{n} \mu_{i}+t_{p}-\sum_{i=1}^{t} t_{i} \\
& (a-1) \sum_{j=1}^{p_{1}^{-1}} j=p \sum_{j=1}^{p_{1}^{2-1}}\left[\frac{j a}{p}\right]+2 \sum_{j=1}^{t} s_{j}-p t
\end{aligned}
$$

Consider the $(\bmod 2)$

$$
0 \equiv \sum_{j=1}^{p_{1}}\left[\frac{j a}{p}\right]-t(\bmod 2)
$$

Here

$$
\sum_{j=1}^{p_{2}^{-2}}\left[\begin{array}{c}
j a \\
p
\end{array}\right] \equiv t\left(\begin{array}{l}
\bmod 2) \\
\text { Gums } \text { Lemma }
\end{array}\right.
$$

By tore Garner Lemma

$$
\left(\frac{a}{p}\right)=(-1)^{t} \equiv(-1)^{\frac{\xi^{t}}{\xi^{t}}\left[\frac{n}{r}\right]}
$$

Let $S(p, q)=\sum_{j=1}^{\frac{q}{2}-1}\left[\frac{j p}{q}\right]$
we know

$$
\begin{aligned}
& \left(\frac{p}{q}\right)=(-1)^{s(z, p)} \\
& \left(\frac{q}{p}\right)=(-1)^{s(p, q)}
\end{aligned}
$$

Therefe

$$
\left(\frac{p}{q}\right)\left(\frac{q}{q}\right)=(-1)^{s\left(p_{q}\right)+s(q, p)}
$$

We need to prove

$$
\begin{aligned}
& \quad S(p, s)+S(s, p)=\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right) \\
& y=\frac{s x}{p}
\end{aligned}
$$

We will count sex lattoc ponts diffeent ways (Wi't incturcts sezp asis) The abrivy enswer io $\frac{p_{2}-1}{2} \frac{-1}{2}$

It it eary Do shew

$$
\underbrace{\frac{q-1}{2}}_{\substack{\text { neizht } \\ \text { of } m}}<\underbrace{\frac{q(p-1)}{2 p}}_{\substack{\text { heiz } N t \\ \text { o } N}}<\frac{q-1}{2}+1
$$

So 2 Ren are no integes in tringle mNR except porsibly

Thene are no lattiue points on OC eicther exespt, O or C. Hewe tho number of pants in OKml is ex sun of Ex number of pants in thes tivo triangles OUN and $O L R$

Henght of T is $\frac{s i}{p}$
Thus are $\left[\frac{q j}{p}\right]$ lattor paints on ST

So OUN cortadins

$$
\sum_{j=1}^{p, p}\left[\frac{j q}{p}\right]=S(q, p)
$$

similes it cen be shown number in $O C K$ io $S(p, q)$

Example
Dues

$$
x^{2}=34 \bmod (293)
$$

hove solutores?

$$
\begin{aligned}
\left(\frac{34}{293}\right) & =\left(\frac{2}{293}\right)\left(\frac{17}{293}\right) \\
& =-\left(\frac{17}{293}\right) \\
& =-\left(\frac{293}{17}\right) \\
& =-\left(\frac{4}{17}\right)=-1
\end{aligned}
$$

Does not here salutives

Continiued Froutturs

$$
\begin{aligned}
\frac{279}{112} & =2+\frac{55}{112} \\
& =2+\frac{1}{\left(\frac{112}{55}\right)} \\
& =2+\frac{1}{2+\left(\frac{2}{55}\right)} \\
& =2+\frac{1}{2+\frac{1}{\left(\frac{55}{2}\right)}} \\
& =2+\frac{1}{2+\frac{1}{27+\frac{1}{2}}} \\
& =[2 ; 2,27,2]
\end{aligned}
$$

Any expansion of fext form

$$
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}+\cdots}
$$

is a continived frouten
Neneto ths

$$
\begin{aligned}
& {\left[a_{0} ; a_{1}, a_{2}, \ldots\right]} \\
& y \text { it is infinite } \\
& {\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{N}\right]}
\end{aligned}
$$

do a fmits continived frouton

$$
\text { If } a_{i} \in \mathbb{N}, \quad i \in 1,2, \ldots
$$

then the contrived fractern io simple An invito contenivel froceser converes
if the sequene of Gmite contniveel frouttens

$$
\left[a_{0}\right],\left[a_{0} ; a_{1}\right],\left[a_{0} ; a_{1}, a_{2}\right], \ldots \text { conveges }
$$

All simple continived froetten converge

Whintchine 1964
A continined fruetten converses

$$
\sum_{i=0}^{\infty} a_{i}=\infty
$$

BooK: Whinchin

Note that

$$
\begin{aligned}
& {\left[a_{0}, a_{1}, a_{2}, \ldots a_{N}, a_{N+1}, \ldots\right]} \\
& \quad=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{N},\left[a_{N+1}, a_{N+2}, \ldots\right]\right]
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& a_{0} \in \mathbb{N} \cup\{0\} \\
& a_{1}, a_{2}, \ldots, \mathbb{N}
\end{aligned}
$$

and let $p_{0}=a_{0} \quad p_{1}=a_{0} a_{1}+1$

$$
\begin{aligned}
& q_{0}=1 \quad q_{1}=a_{1} \\
& p_{n}=a_{n} p_{n-1}+p_{n-2}, q_{n}=a_{n} q_{n-1}+q_{n-2}
\end{aligned}
$$

If $\alpha \in \mathbb{R}, \alpha \geqslant 1$ then
(i) $\left[a_{0}, \ldots, a_{n}, \alpha\right]=\frac{a p_{n}+p_{n-1}}{a q_{n}+q_{n-1}}$
 cannivel
follens directs
from (i)
Proaf
incluites

$$
\left[a_{0}, a_{1}\right]=a_{0}+\frac{1}{a_{1}}
$$

$$
\begin{aligned}
& =\frac{a_{0} a_{1}+1}{a_{1}}
\end{aligned}=\frac{\rho_{1}}{q_{1}}, ~ \begin{aligned}
{\left[a_{0}, a_{1}, \alpha\right] } & =\frac{1}{a_{0}+\frac{1}{\alpha}} \\
& =\frac{\alpha \rho_{1}+\rho_{0}}{\alpha q_{1}+q_{0}}
\end{aligned}
$$

check!

Assume statement halle for $n=U$

$$
\left[a_{0}, a, \ldots, a_{u}, \alpha\right]=\frac{\alpha p_{u}+p_{u-1}}{a q_{4}+q_{u-1}}
$$

Consider

$$
\begin{aligned}
& {\left[a_{0}, a_{1}, \ldots, a_{u}, a_{u+1}, \alpha\right] } \\
&= {\left[u_{0}, a_{1}, \ldots, a_{u}\left[a_{u+1}, \alpha\right]\right] } \\
&= \frac{\left[a_{u+1}, \alpha\right] p_{u}+p_{u-1}}{\left[a_{u+1}, \alpha\right] q_{u}+q_{u-1}} \\
&= \frac{\alpha p_{u+1}+p_{u}}{\alpha q_{u+1}+q_{u}} \\
& {\left[a_{u+1}, \alpha\right]=a_{u+1}+\frac{1}{\alpha}=\frac{\alpha a_{u+1}+1}{\alpha} }
\end{aligned}
$$

Lemma
Consider twe continived

$$
\left[a_{0}, a_{1}, \ldots\right]
$$

(1) $p_{n} q_{n+1}-p_{n+1} q_{n}=(-1)^{n+1}$

$$
\Rightarrow \frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}=\frac{1}{q_{n} q_{n+1}}
$$

(2) $\left(p_{n}, q_{n}\right)=1$ clear
(3) For $n>0 \quad q_{n+1}>q_{n} \Rightarrow q_{n} \geqslant n$ cleer

$$
\begin{array}{r}
\text { (4) } \frac{p_{0}}{q_{0}}<\frac{p_{2}}{q_{2}}<\cdots<\frac{p_{2 m}}{q_{2 m}}<\cdots<\frac{p_{2 n+1}}{q_{2 n+1}}<\frac{p_{2 n-1}}{q_{2 n-1}}< \\
\cdots<\frac{p_{3}}{q_{3}}<\frac{p_{1}}{q_{1}}
\end{array}
$$

(5) All infinits semples contnived frouteors converge
poof
(1)

$$
\begin{aligned}
p_{n} q_{n+1}-p_{n+1} q_{n}= & p_{n}\left(a_{n+1} q_{n}+q_{n-1}\right) \\
& -\left(a_{n+1} p_{n}+p_{n-1}\right) q_{n} \\
= & p_{n} q_{n-1}-p_{n-1} q_{n} \\
= & -\left(p_{n-1} q_{n}-q_{n} p_{n-1}\right) \\
= & -\left(-\left(p_{n-2} q_{n-1}-p_{n-1} q_{n-2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{n}\left(p_{0} \varepsilon_{1}-p_{1} q_{0}\right) \\
& =(-1)^{n+1}
\end{aligned}
$$

(4)

$$
\begin{aligned}
\frac{p_{2 n}}{\varepsilon_{2 n}}-\frac{p_{2 n+2}}{q_{2 n+2}} & =\frac{p_{2 n}}{q_{2 n}}-\frac{p_{2 n+1}}{\varepsilon_{2 n+1}}+\frac{p_{2 n+1}}{\varepsilon_{2 n+1}}-\frac{p_{2 n+2}}{q_{2 n+2}} \\
\left(p_{2 n} 1\right) & =\frac{(-1)^{2 n+1}}{\varepsilon_{2 n} q_{2 n+1}}-\frac{(-1)^{2 n+2}}{q_{2 n+1} q_{2 n+2}} \\
& =\frac{1}{q_{2 n+1} q_{2 n+2}}-\frac{1}{q_{2 n} q_{2 n+1}}<0
\end{aligned}
$$

Thus to sequence $\frac{p_{2 n}}{\varepsilon_{2 n}}$ ib increcesing
ID cen similerly be shown that tex sequence
$\frac{p_{n+1}}{q_{n+1}}$ is decreasing
Its eng t show $\frac{p_{2 n}}{q_{2 n}}-\frac{p_{2 n+1}}{q_{2 n+1}}<0$
Assume, for centrudeten

$$
\begin{aligned}
& \frac{p_{2 n}}{q_{2 n}}>\frac{p_{2 m+1}}{q_{2 m+1}} \quad \text { for same } n, n \\
& \text { If } m>n \text { then } \\
& \frac{p_{2 m}}{q_{2 m}}>\frac{p_{2 n}}{q_{2 n}}>\frac{p_{2 m+1}}{q_{2 m+1}} \quad \text { controcliz } q_{i n} \\
& \text { If } m<n \text { then } \\
& \frac{p_{2 n+1}}{q_{2 n+1}}<\frac{p_{2 m+1}}{q_{2 m+1}}<\frac{p_{2 n}}{q_{2 n}} \text { centruelictin }
\end{aligned}
$$

(5) By Wh monotore cenveryene theeven
the serperies
$\left(\frac{p_{2 n}}{q_{2 n}}\right)$ and $\left(\frac{p_{2 m+1}}{q_{2 m+1}}\right)$ batt cenverge
We Unow

$$
\left|\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}\right| \rightarrow 0 \text { as } n \longrightarrow \infty
$$

Therefore $\left(\frac{p_{n}}{q_{n}}\right)$ converges

Fad (jun)
Let $a \in \mathbb{R}$ witb interge part [a]

$$
\begin{aligned}
& \alpha=[\alpha]+\frac{1}{\alpha_{1}} \\
& \alpha_{1}=\left[\alpha_{1}\right]+\frac{1}{\alpha_{2}} \text { ete } \\
& \alpha=\left[\left[\alpha_{1}\right],\left[\alpha_{1}\right],\left[\alpha_{2}\right], \ldots\right]
\end{aligned}
$$

Eect
Fvery rottenal con te representeob
in twi ways

$$
\left[a_{0}, \ldots, a_{n}\right]_{0}=\left[a_{0}, \ldots, a_{n}-1,+1\right]
$$

Theerem
Let, α be inatienal, witt centininel practes $\left[a_{0}, a_{1}, \ldots\right]$, then
(1) $\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}=\alpha$
(2) $\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}}<\frac{1}{q_{n}{ }^{2}}$

Roof
(1)

$$
\begin{aligned}
\text { Lit } \alpha & =\left[a_{0}, a_{1}, \ldots a_{n}, \alpha_{n+1}\right] \\
& =\frac{\alpha_{n+1} p_{n}+p_{n-1}}{\alpha_{n+1} q_{n}+q_{n-1}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \alpha-\frac{p_{n}}{\varepsilon_{n}}=\frac{\alpha_{n+1} p_{n}+p_{n-1}}{\alpha_{n+1} q_{n}+q_{n-1}}-\frac{p_{n}}{q_{n}} \\
&=\frac{(-1)^{n}}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)} \\
& \alpha<\frac{0}{} \quad>0 \text { nodd } \\
& \alpha<\frac{p_{n}}{q_{n}} n \text { ocren } \\
& \alpha>\frac{p_{n}}{q_{n}} n \text { even }
\end{aligned}
$$

Heme $\lim _{n \rightarrow \infty} \frac{f_{n}}{q_{n}}=\alpha$
Theevem
(1) If $\left[a_{0}, a_{1}, \ldots, a_{m}\right]=\left[a_{0}^{\prime}, \ldots, a_{n}^{\prime}\right] \quad a_{i}, a_{i}^{\prime} \in \mathbb{N}$ then $m=n \quad a_{i}=a_{i}^{\prime} \quad i=0, \ldots, m$
(2) If $\left[a_{0}, u_{1}, \ldots\right]=\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right] \quad a_{i}, a_{i}^{\prime} \in \mathbb{W}$ then $u_{i}=u_{i}^{\prime} \quad i=0,1,2$,

Example

$$
\begin{aligned}
\sqrt{37} & =6+(\sqrt{37}-6) \\
& =6+\frac{1}{\left(\frac{1}{\sqrt{37}-6}\right)} \\
& =6+\frac{1}{\sqrt{37}+6} \\
& =6+\frac{1}{12+(\sqrt{37}+6-12)} \\
& =6+\frac{1}{12+(\sqrt{37}-6)} \\
& =6+\frac{1}{12+\frac{1}{12+\frac{1}{12+}}} \\
& =\left[6, \frac{12}{12}\right]
\end{aligned}
$$

Examp

$$
\sqrt{2}=[1, \overline{2}]
$$

Let $\alpha=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+}}}$

$$
\begin{aligned}
& =[T] \\
& =1+\frac{1}{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{2}-\alpha-1=0 \\
& \alpha=\frac{1 \pm \sqrt{5}}{2} \\
& a_{i}=1 \quad i=0,1, \ldots \\
& p_{0}=a_{0}=1 \\
& p_{1}=a_{0} a_{1}+1=2 \\
& q_{0}=1 \\
& q_{1}=a_{1}=1
\end{aligned}
$$

$$
\begin{array}{ll}
p_{1}=q_{2} p_{1}+p_{0}=p_{1}+p_{0}=3 & q_{2}=q_{1}+q_{0}=2 \\
p_{3}=p_{2}+p_{1}=5 & q_{3}=q_{2}+y_{1}=3 \\
p_{4}=8 & q_{4}=5 \\
p_{5}=13 & q_{5}=8
\end{array}
$$

Convegence of ter Golder rates are

$$
\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}
$$

Example

$$
e=[2,1,2,1,1,4,1,1,6,1,1,8, \ldots]
$$

Algehai number it seot of an interger polynomial

Theerem
The continiced frocton exponsion of $\alpha \in \mathbb{R}$ is evariall peridic if a is a queveratte irratienal.

Proaf
conergents

$$
\text { ase } \frac{\ell}{2 n}
$$

Sugpose $\alpha=\left[a_{0}, a_{1, \ldots}, a_{k-1}, \overline{a_{k}, \ldots, a_{k+n-1}}\right]$
Then ve con writt $\alpha=\left[a_{0}, a_{1}, \ldots ., a_{k-1}, \alpha_{k}\right]$
Where $\alpha_{k}=\left\{\begin{array}{l}\text { conergents } \\ \alpha_{n}, a_{n} \\ a_{n+1}, \ldots, a_{u+n-1}, \alpha_{n}\end{array}\right]$
Then $\alpha=\frac{\alpha_{u} p_{u-1}+p_{u-2}}{\alpha_{u} q_{u-1}+q_{u-2}} \Rightarrow \alpha_{u}=\frac{p_{u-2}-\alpha q_{u-2}}{\alpha q_{u-1}-p_{n-1}}$
and $\quad \alpha_{n}=\frac{\alpha_{k} p_{n-1}^{\prime}+p_{n-2}^{\prime}}{a_{n} q_{n-1}^{\prime}+q_{n-2}^{\prime}}$

Publen Thero together

$$
\left(\frac{p_{n-2}-\alpha q_{n-2}}{\alpha q_{n-1}-p_{n-1}}\right)_{n n-1}^{2}+\left(\frac{p_{n-2}-\alpha q_{n-2}}{\alpha q_{n-1}-p_{n-1}}\right)\left(q_{n-1}^{\prime}-p_{n-1}^{\prime}\right)-p_{n-2}^{\prime} q_{n-2}^{\prime}=0
$$

is quadrata in α

Conversly, suypose

$$
\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}, \alpha_{n}\right] \in \mathbb{R} \mid \mathbb{Q}
$$

and \exists uil, $c \in \mathbb{Z}$ st

$$
a \alpha^{2}+b \alpha+c=0
$$

As before

$$
\alpha=\frac{\alpha_{n} p_{n-1}+p_{n-2}}{\alpha_{n} q_{n-1}+q_{n-2}}
$$

We obtain $A_{n} \alpha_{n}^{2}+B_{n \alpha_{n}}+C_{n}=0$

$$
\begin{aligned}
& A_{n}=a p_{n-1}^{2}+b p_{n-1} q_{n-1}+c q_{n-1}^{2} \\
& B_{n}=2 a p_{n-1} p_{n-2}+b\left(p_{n-1} q_{n-2}+p_{n-2} q_{n-1}\right)+2 c q_{n-1} q_{n-2} \\
& C_{n}=a p_{n-2}^{2}+b_{p_{n-2}} q_{n-2}+C_{q_{n-2}}=A_{n-1}
\end{aligned}
$$

If $A_{n}=0$ then $\frac{\rho_{n-1}}{q_{n-1}}$ is a 00θ of $a x^{2}+b x+c$

Nots sthat $B_{n}^{2}-4 A_{n} C_{n}=l^{2}-4 a c$

We know

$$
\left|\alpha-\frac{p_{n-1}}{q_{n-1}}\right|<\frac{1}{q_{n-1}}
$$

Hence, $\exists \delta_{n-1}\left|\delta_{n-1}\right|<1$ st

$$
\begin{aligned}
& \alpha-\frac{p_{n-1}}{q_{n-1}}=\frac{\delta_{n-1}}{q_{n-1}^{2}} \\
& p_{n-1}=\alpha p_{n-1}+\frac{\delta_{n-1}}{q_{n-1}}
\end{aligned}
$$

Put thar into An As altai

$$
\begin{aligned}
A_{n}= & q_{n-1}^{2}+\left(a \alpha^{2}+b \alpha+c\right)+2 a \alpha \delta_{n-1} \\
& +\frac{a \delta_{n-1}^{2}}{q_{n-1}^{2}}+b \delta_{n-1} \\
= & \delta_{n-1}(2 a \alpha+b)+\frac{a \delta_{n-1}^{2}}{q_{n-1}^{2}}
\end{aligned}
$$

Then

$$
\left|A_{n}\right|<|2 a \alpha+b|+|a|
$$

$$
\Rightarrow\left|C_{n}\right|<|2 a \alpha+b|+|a|
$$

Fmally

$$
\begin{aligned}
B_{n}^{2}-4 A_{n} C_{n} & =b^{2}-4 a c \\
B_{n}^{2} & =b^{2}-4 a c+4 A_{n} C_{n} \\
B_{n}^{2} & <b b^{2}-4 a c \mid+4(|2 a \alpha+b|+|a|)^{2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\left(A_{N}\right),\left(B_{N}\right),\left(C_{N}\right) \\
\forall N, & \left(A_{n}\right)
\end{array}\right) d=1
$$

Eventarlb, \exists कom triples

$$
\begin{aligned}
& \left(A_{n_{1}}, B_{n_{1}, 1} C_{n_{1}}\right)=\left(A_{n_{2}}, B_{n_{1}}, C_{n_{2}}\right) \\
& \Rightarrow \alpha_{n_{1}}=\alpha_{n_{2}} \\
& a_{n_{1}}=a_{n_{2}} \\
& a_{n_{1}+1}=a_{n_{2}+1}
\end{aligned}
$$

This aleo implay that in tex conteniuel froctern 发 a_{i} ore connded

Open Questien
Ane enterse $2^{\frac{1}{3}}$ bounded?

Fast
The say of Centeninerel protens wito loneled entories has lebesque measul zero

Theorem
Let $n>1, \quad 0<q \leqslant q_{n} \quad \frac{p}{q} \neq \frac{p_{n}}{q_{n}}$
Where $\frac{p_{n}}{q_{n}}$ are cole convergents of a senl number a

Then $\left|\rho_{n}-q_{n} \alpha\right|<|p-q \alpha|$

$$
\Rightarrow\left|\alpha-\frac{n_{n}}{g_{n}}\right|<\left|\alpha-\frac{p}{\varepsilon}\right|
$$

soof
(1) $L \mathscr{d} q=q_{n}$

Then $\left|\frac{p_{n}}{\varepsilon_{n}}-\frac{p}{q_{n}}\right| \geqslant \frac{1}{q_{n}}$
Howerer $\left|\alpha-\frac{p_{n}}{q_{n}}\right| \leqslant \frac{1}{q_{n} q_{n+1}} \leqslant \frac{1}{2 q_{n}}$

(2) Now sugrose

$$
g_{n-1}<q<q_{n}
$$

and $\frac{p}{q} \neq \frac{p_{n}}{s_{n}}, \frac{p_{n-1}}{q_{n-1}}$
We con find $\mu, \nu \in \mathbb{R}$ sont that

$$
\begin{aligned}
& \mu p_{n-1}+\nu \rho_{n-1}=p \\
& \mu q_{n}+\nu q_{n-1}=q
\end{aligned}
$$

Salung for μ and ν yres

$$
\begin{aligned}
& \mu= \pm\left(p q_{n-1}-q p_{n-1}\right) \in \mathbb{Z} \mid\{0\} \\
& \nu= \pm\left(p_{n}-s p_{n}\right) \in \mathbb{Z} \mid\{0\}
\end{aligned}
$$

We have

$$
q=\mu p_{n}+v q_{n-1}
$$

So μ, ν hare ogzosid sizns
We ales uner that

$$
\left(p_{n}-q_{n} \alpha\right) \text { and }\left(p_{n-1}-q_{n-1} \alpha\right)
$$

alro have chiffeent sizns
Therefore

$$
\mu\left(p_{n}-q_{n} \alpha\right) \text { and } \nu\left(p_{n-1}-q_{n-1} \alpha\right)
$$

have same sizn
Hewower

$$
p-g_{\alpha}=\mu\left(p_{n}-g_{n} \alpha\right)+\nu\left(p_{n-1}-q_{n-1} a\right)
$$

Thus

$$
\begin{aligned}
|p-q \alpha| & \geqslant \max \left(|\mu|\left|p_{n}-q \alpha^{\alpha}\right|,|\nu|\left|p_{n-1}-q_{n-1} \alpha\right|\right) \\
& \geqslant \max \left(\left|p_{n}-q_{n} \alpha\right|,\left|p_{n-1}-q_{n-1} \alpha\right|\right)
\end{aligned}
$$

as required
Compled by iducten

Theenem
Lef $\frac{p_{n}}{i_{n}}, \frac{p_{n+1}}{q_{n+1}}$ be corsecutent connegert
of $\alpha \in \mathbb{R}$. Then at leesit are of $\left|\alpha-\frac{e_{i}}{\xi_{i}}\right|<\frac{1}{2 q_{i}{ }^{2}}$ holdg $i=n, n+1$ Thus, implif teens are efmix meny nattenab setrifyery

$$
\left|\alpha-\frac{p}{v}\right|<\frac{1}{2 s^{2}} \text { for ewh } \alpha \in \mathbb{R} \backslash \mathbb{Q}
$$

Coof
Assume the does not hald, io

$$
\left|\alpha-\frac{p_{i}}{\varepsilon_{i}}\right| \geqslant \frac{1}{2 s_{i}^{2}} \quad i=n, n+1
$$

We hare

$$
\begin{aligned}
\frac{1}{g_{n} q_{n+1}} & =\left|\frac{n_{n+1} g_{n}-p_{n} g_{n+1}}{g_{n} q_{n+1}}\right| \\
& =\left|\frac{p_{n+1}}{g_{n+1}}-\frac{p_{n}}{g_{n}}\right| \\
& =\left|\frac{\rho_{n}}{g_{n}}-\alpha\right|+\left|\frac{n_{n}}{g_{n+1}}-\alpha\right| \\
& \geqslant \frac{1}{2_{n}{ }^{2}}+\frac{1}{2 g_{n+1}{ }^{2}}
\end{aligned}
$$

nearrongry gives

$$
\left(q_{n+1}-\varepsilon_{n}\right)^{2} \leq 0
$$

impoesshle urless

$$
n=0 \quad q_{1}=1 \quad g_{0}=g_{1}=1
$$

Even in thes cose serult still holels

Dheerem
If $\alpha=\frac{p \beta+k}{Q \beta+S}$

$$
\begin{aligned}
& \beta>1 \quad P, Q, R, S \in \mathbb{Z} \text { such stunt } \\
& Q>S=0, \quad P S-Q R= \pm 1
\end{aligned}
$$

Then, $\frac{R}{S}, \frac{P}{Q}$ we conreuntons conregents of α

Theenem
Let $\alpha \in \mathbb{R} \mathbb{Q}$
$\frac{p}{\varepsilon} \in \mathbb{C}$

$$
|\alpha-p|<\frac{1}{2 q^{2}}
$$

Then f is a convergent of α

Questeen
Fer which furetose of do ufiniel many rationd eavt such thet

$$
|\alpha-|q|<f(v) ?
$$

Hurnitr Theenem
There ore ofintel many a aruergent
$\frac{b_{1}}{\text { sn of a in inctinal namber } \alpha}$ such that

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{\sqrt{5} q_{n}^{2}}
$$

This is shop (cunot be impronel) is荡 sense thit $\exists \alpha \in \mathbb{R} \mid \mathbb{Q}$ sunh that

$$
\left|\alpha-\frac{e_{n}}{g_{n}}\right|<\frac{1}{(\sqrt{5}+\varepsilon) g_{n}^{2}}
$$

does not hald for infirtel many n
frouf
We will shew thatb at leont are of erey the coreculwd convegent satespes

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{\sqrt{5} g_{n}^{2}}
$$

We hure

$$
\begin{aligned}
\left|\alpha-\frac{p_{n}}{\varepsilon_{n}}\right| & =\frac{1}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)} \\
& =\frac{1}{q_{n}^{2}\left(\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}\right)}
\end{aligned}
$$

We vill shew theit

$$
\alpha_{i}+\frac{g_{i-2}}{q_{i-1}} \leq \sqrt{5} \quad \text { (k) }
$$

Connot hald for these conseantere i
Sugpose (\%) holels fe $i=n-1$ and $i=n$

$$
\alpha_{n-1}+\frac{y_{n-3}}{y_{n-2}} \leqslant \sqrt{5}
$$

$$
\alpha_{n}+\frac{q_{n-2}}{q_{n-1}} \leq \sqrt{5}
$$

Alwo $\alpha_{n-1}=a_{n-1}+\frac{1}{\alpha_{n}}$

$$
\begin{aligned}
\frac{q_{n-1}}{q_{n-2}} & =\frac{a_{n-1} q_{n-2}+q_{n-1}}{q_{n-2}} \\
& =a_{n-1}+\frac{q_{n-3}}{q_{n-2}}
\end{aligned}
$$

$\frac{1}{\alpha_{n}}+\frac{q_{n-1}}{q_{n-2}}=\alpha_{n-1}+\frac{q_{n-3}}{q_{n-2}} \leq \sqrt{5}$ from (*)

$$
\begin{aligned}
1 & =\frac{\alpha_{n}}{\alpha_{n}} \leqslant\left(\sqrt{5}-\frac{q_{n-1}}{q_{n-2}}\right)\left(\sqrt{5}-\frac{q_{n-2}}{q_{n-1}}\right) \\
& \Rightarrow \frac{q_{n-1}}{\varepsilon_{n-2}}+\frac{q_{n-2}}{\varepsilon_{n-1}} \leqslant \sqrt{5} \\
& \Rightarrow \frac{q_{n-1}}{\varepsilon_{n-2}}+\frac{q_{n-2}}{\varepsilon_{n-1}}<\sqrt{5} \quad \text { (*)(\$)}
\end{aligned}
$$

$$
\begin{aligned}
& 1-\frac{q_{n-2}^{2}}{q_{n-1}^{2}} \leqslant \frac{\sqrt{5} \frac{q_{n-2}}{q_{n-1}}}{} \begin{aligned}
& \frac{\sqrt{5}-1}{2}<\frac{q_{n-2}}{q_{n-1}}<\frac{1+\sqrt{5}}{2}
\end{aligned},=\frac{1}{2}
\end{aligned}
$$

Now cussume (t) holefs for $i=n+1$ and ly pecisely 位会 same orgament we abtiun

$$
\frac{q_{n-1}}{q_{n}}>\frac{\sqrt{5}-1}{2}
$$

Now

$$
\begin{aligned}
a_{n}=\frac{q_{n}-q_{n-2}}{q_{n-1}} & =\frac{q_{n}}{q_{n-1}}-\frac{g_{n-2}}{q_{n-1}} \\
& <\left(\sqrt{5}-\frac{g_{n-1}}{q_{n}}\right)-\frac{q_{n-2}}{q_{n-1}} \\
& \text { foom }(*)(*) \\
& <\sqrt{5}-(\sqrt{5}-1)=1
\end{aligned}
$$

Contradicties
Hence the exist ane of $i=n-1, n, n+1$ sewh That

$$
\frac{q_{i-2}}{q_{i-2}}>\sqrt{5}
$$

Prouf twond the is shoup
We will shen wate exitt $\gamma \in R \backslash \mathbb{Q}$ such Thex of $a>\sqrt{5}$ the

$$
\left|\gamma-\frac{p}{2}\right|<\frac{1}{a q^{2}}
$$

has at mest finithen many soluters, $\frac{1}{2}$ $\operatorname{LA} \gamma=\frac{\sqrt{5}-1}{2}$
and suppose ix nequality has infintere many solinctios and we choose q whincourfs lerge

We have

$$
\begin{aligned}
& \frac{\sqrt{5}-1}{2}=\frac{k}{q}+\frac{\delta}{q^{2}} \quad|\delta|<a<\frac{1}{\sqrt{5}} \\
& \frac{\sqrt{5} q}{2}-\frac{\delta}{q}=p+\frac{q}{2}
\end{aligned}
$$

Squere botb sides $\not \approx$ abtun

$$
\begin{aligned}
& \frac{5 q^{2}}{4}+\frac{\delta^{2}}{q}-\sqrt{5} \delta=p^{2}+\frac{s^{2}}{4}+1 q \\
& \begin{array}{l}
\left|\frac{s^{2}}{q^{2}}-\sqrt{5} \delta\right|=\left|p^{2}+p s-q^{2}\right|=\left(\frac{q}{2}+p\right)^{2}-\frac{5 q^{2}}{4} \\
\quad Z
\end{array} \\
& \text { Choose q such that } \quad C=0
\end{aligned}
$$

$$
\left|\frac{\delta^{2}}{\varepsilon^{2}}-\sqrt{5} \delta\right|<1 \Rightarrow
$$

Therefere

$$
\begin{aligned}
\left(\frac{y}{2}+p\right)^{2} & =\frac{5_{q}^{2}}{4} \\
\frac{y}{2}+p & =\frac{ \pm \sqrt{5} y}{2} \\
\in \mathbb{Q} & =\mathbb{Q}
\end{aligned}
$$

Whariturn
A veal number α is greormabla
 mery rationuab such

$$
\left|\alpha-\frac{f}{q}\right|<\frac{1}{q^{n}}
$$

Liaunille's Theerem (1844)
A real alyebire number of degree d no not ayporimable D any degree lerger then d.
Peof
Sypore $\alpha \in \mathbb{R}, \alpha$ algelrare of degree d.

Then $\exists M$ such itat

$$
\left|f^{\prime}(x)\right|<M \quad x \in(\alpha-1, \alpha+1)
$$

$\left\{\begin{array}{c}\text { Pell's Equater } \\ \text { an Sted Exam }\end{array}\right.$ nill not le

Liaurille's theeren
α algebraz deguce ol minmal pelgranal $f \in \mathbb{Z}[x]$

$$
\begin{aligned}
& f(x)=a_{d} x^{\alpha}+\ldots+a_{1} x+\alpha_{0} \\
& f(\alpha)=0
\end{aligned}
$$

$\exists M$ st $|f(x)| \leq M \quad x \in(\alpha-1, a+1)$
Let $f \in(\alpha-1, \alpha+1)$ and sesyore α
we hove

$$
\begin{aligned}
\left|f\left(\frac{p}{q}\right)\right| & =\left|\frac{a_{d} p^{d}+a_{d-1} p^{d-1} q+\ldots+a_{p} q^{d-1}+a_{c} q^{d}}{q^{d}}\right| \\
& =\frac{1}{q^{d}}
\end{aligned}
$$

Aler $f\left(\frac{t}{\varepsilon}\right)=f\left(\frac{t}{2}\right)-f(\alpha)$

$$
=\left(\frac{f}{(u \pi)}-\alpha\right) f^{\prime}(\xi)
$$

I lies litween $\frac{t}{z}$ and α

Hene

$$
\begin{aligned}
|\alpha-\xi| & =\frac{\|(\xi) \mid}{\left|\ell^{\prime}(\xi)\right|} \\
& \geqslant \frac{1}{M_{v^{2}}{ }^{d}}
\end{aligned}
$$

Thes, α cunct be aspromatend $\mathscr{\theta}$ eny order greaten $\rightarrow d$. in pelicaler, αi_{0} a quadrate iratenal,

$$
|\alpha-\xi| \geqslant \frac{1}{M \varepsilon^{2}}
$$

α is bally ysproximable
Louill's Number a Tonscerelening

$$
\alpha=\sum_{i=1}^{\infty} 10^{-i!}=0.1100010000
$$

Let $N>2$, and segpore $n>N$

$$
\alpha_{n}=\sum_{i=1}^{n} 10^{-i!}=\frac{p}{10^{n!}}=\frac{\rho}{Q}
$$

$$
\begin{aligned}
\left|\alpha-\alpha_{n}\right| & =\alpha-\frac{p}{Q}=\sum_{i=n+1}^{\infty} 10^{-i!} \\
& \leq \sum_{i=k+1)!}^{\infty} 10^{-i} \sum_{\text {germebic }} \\
& =\frac{10^{-(n+1)!}}{\left(\frac{q}{10}\right)} \\
& =\frac{10}{9} 10^{-(n+1)!} \\
& \leqslant 2 \cdot 10^{-(-+1)!} \\
& =2 \cdot Q^{-n+1} \\
& <2 \cdot Q^{-N}
\end{aligned}
$$

So α io gsproxmable it every elegree and connot be algelraic ly Liowilles isleorem
Ratb's Theonem (1964)
Lef a be algelrax. Then Tio irequatity

$$
\left|2-\frac{p}{\varepsilon}\right|<\frac{1}{q^{2+\varepsilon}}
$$

hus at most finilef many soluttens $\forall \varepsilon>0$

Diophontine Equattors
Femoth las θ Therem

$$
x^{n}+y^{n}=z^{n} \quad(x y, z) \in \mathbb{Z}^{3}
$$

anly has salutoms for $n \leqslant 2$
Congectio fo 350 yeus, proned by
Andrev Wiles

First rechued At shemng only need A cersider oded primes
$r_{n}=3,1770$ Eulb, legende
If p and $2 p^{+1}$ we ald piome

$$
x^{p}+y^{r}=z^{p} \text { has no soluttor } 1805 \text { sophe }
$$

- $n=5,1825$ Direhlet, Legende
- $n=7$, Lamé, 1839 infond dexcent
- 1850's Kummer proved cosnlf for all regule primes
(infinitef many prims)
"Buth of algelraic number Theoy"
- Frey 1983 proved $x^{n+}+n=z^{n}$ has
in. Af many solutrend, $n \geq 2$
"ellyth curves"
- 1993 Wiles

Pythagereur Tryles

$$
x^{2}+y^{2}=2^{2} \quad \text { eg } 3,4,5
$$

If haf $(x, y, z)=1$ thes It is a primilent Pyithyoceen

Lemma
If $(x y y, z)=1$ and (x, y, z) is a promitm pythaugreen (arfite (PNT)

$$
(x, y)=(x, z)=(y, z)
$$

Lemmar 2
If (x, y, \geq) ib a PNT then

$$
x \neq y(\bmod 2)
$$

Lemma 3
If $r, s, t \in \mathbb{N},(x, s)=1$ and $a=t^{2}$ then $\neq m, n \in \mathbb{N}$ st $a=m^{2}, s=n^{2}$

Theorem
Let

$$
\begin{aligned}
& \text { Lef } x, y,=\in \mathbb{N} \text { vitb } y \text { even. Then } \\
& (x, y, z)^{p_{0}} a \quad p p y^{\prime} \text { an } m, n \in \mathbb{N}
\end{aligned}
$$ $m>_{n},(m, n)=1, m \neq n(\bmod 2)$

sach thed

$$
x=m^{2}-n^{2} \quad y=2 m n \quad z=m^{2}+n^{2}
$$

$\cos ^{2} \theta \sin ^{2} \theta=1, \sin 2 \theta=2 \sin \theta \cos \theta, \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
hrouf
Lef $(t, y, 2)$ be a PNT wits y
even so x and 2 we oold y
Therefole

$$
2+x \text { and } z^{-x}
$$

cre even
Let

$$
r=\frac{2+x}{2}, s=\frac{2-x}{2}
$$

We hore

$$
\begin{aligned}
x^{2}+y^{2} & =z^{2} \\
\Rightarrow y^{2}=z^{2}-x^{2} & =(z-x)(z+x) \\
& =4 \text { rs }
\end{aligned}
$$

If d / r and d / s Thes $d /(r+s)$ and $d /(r-s)$

Therefore
z^{+x} and z^{-x}
so d / x and d / z
Hence, $d=1$ so $(n, s)=1$
Using Lemma 3 we Unow \exists minc \mathbb{N}

$$
r=m^{2}, s=n^{2}
$$

and $(m, n)=1$

$$
\left.\begin{array}{l}
z=\mu+s=m^{2}+n^{2} \\
x=r-s=m^{2}-n^{2}
\end{array}\right\} \Rightarrow m, n \text { be comot botb }
$$

onrosity directite is on encerse

Theorem
The Dighondine equetten

$$
x^{4}+y^{4}=z^{2}
$$

has no soluttons
foof (Infinit desuent)
Assune a saluten

$$
\left(x_{0}, y_{0}, z_{c}\right) \in \mathbb{N}^{3}
$$

exists. We will show is a secend solution $\left(x, y_{1}, z\right) \in \mathbb{N}^{3}$ suh that $z_{1}<z_{0}$

We have

$$
\left(x_{0}^{2}\right)^{2}+\left(y_{0}^{2}\right)^{2}=z_{0}^{2}
$$

$\{$ Wlog ussume $(x, y)=1$ (excerse)
Tho inguber

$$
\left(x_{0}^{2}, y_{0}^{2}, z_{0}^{2}\right)
$$

ds a PPT

Hence $\exists \mathrm{m} m$ st $m>n \quad(n, m)=1$
and $m \neq n(\bmod 2)$

$$
\begin{aligned}
& x_{0}^{2}=m^{2}-n^{2} \Rightarrow m^{2}=t_{0}^{2}+n^{2} \\
& y_{0}{ }^{2}=2 \mathrm{mn} \text { so }\left(x_{0}, n, m\right) \text { is anoles } \\
& z_{0}=m^{2}+n^{2} \\
& \exists n, s,(r, s)=1, \sim_{5}(\text { moab 2 }) \\
& \left.\begin{array}{l}
n=2 r s \\
m=r^{2}+s^{2}
\end{array}\right\}
\end{aligned}
$$

As $m \equiv 1(\bmod 2)$
and $(m, n)=1$ we hare

$$
(m, 2 n)=1
$$

Hence by Lemma $3 \exists z_{1}, w$ st

$$
\begin{aligned}
& m=z_{1}^{2} \\
& 2 n=w^{2}
\end{aligned}
$$

Thus w ib even, to $\quad v$ st

$$
w=2 v
$$

$$
V^{2}=\frac{w^{2}}{4}=\frac{n}{2}=\mu s
$$

Usory $L_{\text {emma }} 3$ cegcui, $\exists x_{1}, y_{1}$ st

$$
\begin{aligned}
& r=x_{1}{ }^{2} \\
& s=y_{1}{ }^{2}
\end{aligned}
$$

$$
\left(x_{1}, y_{1}\right)=1
$$

$$
x_{1}^{4}+y_{1}^{4}=r^{2}+s^{2}=m=z_{1}^{2}
$$

If remains fo she that $z_{1}<z_{0}$

$$
z_{1}<z_{1}{ }^{4}=m^{2}<m^{2}+n^{2}=z_{0}
$$

This gines on infinis seguenc of saluoter
$\left(x_{n}, y_{n}, z_{n}\right) \in \mathbb{N}^{3}$ with $z_{0}>z_{1}>z_{2}>\ldots$
which controctits well orclering principle.

Bual's Coyectins

$$
x^{a}+y^{b}=z^{c}
$$

has no salutixes $(x, y, z)=\mathbb{z}^{3}$ wity

$$
\begin{aligned}
& a, b, c \geqslant 3 \\
& (x, y)=(y, z)=(x, z)=1
\end{aligned}
$$

Unsolved $\$ 100,000$
Catalen Coyextiso

$$
x^{m}-y^{n}=1 \quad x, y, m, n \in N, m, n=1
$$

has no solutcons except for $x=3$, $n=2, y=2, n=3$
(14 th) $G_{\text {ensen }}$ showed $3^{n}-2^{m} \neq \pm 1$ culces $m=3, n=2, m, n>1$
(18 th) Eular showel

$$
\begin{gathered}
x^{3}-y^{2} \neq \pm 1 \text { exald for previon } \\
\text { solutors }
\end{gathered}
$$

(1976) Tigdeman showed at mort a fmite number of solutions.
(2002) Mihailecu

ABC - conenturs

$$
\left\{\begin{array}{l}
\text { Dilnitin } \\
\text { If } n=\frac{t}{\prod_{i=1} p_{i}^{a_{i}}} \\
\text { then } \operatorname{rad}(n)=\frac{t}{\prod_{i=1} p_{i}}
\end{array}\right.
$$

$\forall \varepsilon>0$ a K_{ε} st $a, b, c \in \mathbb{Z}$

$$
a+b=c \quad(a, b)=1
$$

then

$$
\max \{|a|,(b),|c|\}<K_{\varepsilon} \operatorname{rad}(a b c)^{1+\varepsilon}
$$

(20,2) Mochizuki

San of Squares
Lemma

$$
\begin{aligned}
& \text { If a pome of } p=4 m+1, m \in \mathbb{N} \text {, then } \\
& x^{2}+y^{2}=\text { Up }
\end{aligned}
$$

for some $U \in \mathbb{N}, \quad K<p$

If $p=1(\bmod 4)$
then $\left(\frac{-1}{p}\right)=1$
Hence, $\exists a<p$ st

$$
a^{2} \equiv-1(\text { mod } p)
$$

wo au st

$$
\begin{gathered}
a^{2}+1=K_{p} \\
K_{p}=a^{2}+1<(p-1)^{2}+1
\end{gathered}
$$

$$
\Rightarrow k<p \quad \square
$$

Eheerem
Lid p be a prme, $p \neq 3$ (mal 4) Ther $\exists x y \in \mathbb{Z}$ it

$$
x^{2}+y^{2}=p
$$

frog
$1+1=2$ (sum of esu squares)
Now cessune $p=1(\bmod 4)$.
Let m he six suallest number st $\exists x, y$

$$
x^{2}+y^{2}=m p
$$

Assane, $m \geqslant 1$
Find interges
a ond b sach thet

$$
x \equiv a(\bmod m)
$$

$$
\begin{aligned}
& y \equiv b(\bmod m) \\
& -\frac{m}{2}<a \leqslant \frac{m}{2} \\
& -\frac{m}{2}<b \leqslant \frac{m}{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
a^{2}+b^{2} & =x^{2}+y^{2} \\
& \equiv \operatorname{mp} \\
& \equiv 0(\bmod m)
\end{aligned}
$$

Heme \exists U st

$$
a^{2}+b^{2}=4 m
$$

We have

$$
\left(a^{2}+l^{2}\right)\left(x^{2}+y^{2}\right)=k m^{2} p
$$

and

$$
\left(a^{2}+b^{2}\left(x^{2}+y^{2}\right)=(a x+b y)^{2}+(a y-b x)^{2}\right.
$$

$$
a x+b y=x^{2}+y^{2}(\operatorname{moln})
$$

smile sly

$$
a y-b x \equiv x y-y x \equiv 0(\text { mod })
$$

Thus

$$
\frac{a x+b y}{m}, \frac{a y-b x}{m} \in \mathbb{Z}
$$

Also

$$
\left(\frac{d x+l_{y}}{m}\right)^{2}+\left(\frac{a y-l_{x}}{m}\right)^{2}=u p
$$

We reed x show $K<m$

$$
\begin{aligned}
& 0 \leq K_{m}=a^{2}+b^{2}<\frac{2 m^{2}}{4}=\frac{m^{2}}{2} \\
& K<\frac{m}{2}
\end{aligned}
$$

Cuntrueliction
If $u=0$

$$
\begin{aligned}
& a^{2}+l^{2}=0 \\
& \Rightarrow a=l=0 \\
& \Rightarrow x \equiv y=0(\bmod m) \\
& \Rightarrow x^{2}+y^{2}=\mathrm{mp}
\end{aligned}
$$

Then m / p, imporsith ila uss $m=1$
Theenem
Let $n \subset \mathbb{N}$. Then $\exists \neq y \in \mathbb{s}$ s

$$
x^{2}+y^{2}=n
$$

If) (each prime foutore of n of 㪄 form $44+3$
occurs \& \neq an even power.) ($\$$)
stag
Suppose n satufires ($*$, then

$$
n=t^{2} u
$$

where t is darible liy all focteres of n are congruent io $3(\bmod 4)$ and and u centerius ot sess reet

Eah prome in u can be writtios ar Ah sum of tho squeres. Hence

$$
n=x^{2}+y^{2}
$$

and $n=t^{2}\left(x^{2}+y^{2}\right)$

Now suspore \exists prime plu st

$$
p \equiv 3(\operatorname{mad} 4)
$$

and P is caised x on oeld power

$$
n=x^{2}+y^{2}
$$

If $(x, y)=d$
let $a=\frac{x}{d}, b=\frac{y}{d}$ so

$$
(a, b)=1
$$

Let $m=\frac{n}{d^{2}}$, then

$$
a^{2}+b^{2}=m
$$

Lit p^{4} be ite lergest paver of p sthat divides d then in io
it m is dinsible by p
We may arsume whoy if a As afternse p / b and $(a, b) \geqslant p$.
Hend ex bere congrieme

$$
a z \equiv l(\bmod p)
$$

has a solubtech
Then

$$
\begin{aligned}
a^{2}+b^{2} & \equiv a^{2}+a z^{2} \\
& =a^{2}\left(1+z^{2}\right) \\
& =0(\bmod p) \\
\Rightarrow & z^{2}=-1(\bmod p)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{-1}{p}\right)=1 \\
& \Rightarrow p=1(\operatorname{mal} 4)
\end{aligned}
$$

controdictees

Cegendre 3 squeres Theerem Let $n \in \mathbb{N}$. Then $\exists x, y, z \in \mathbb{N}$ st

$$
x^{2}+y^{2}+z^{2}=n
$$

If n is not of 领 form

$$
n=4^{4}(8 t+7) \quad, \quad K, t \in N \cup\{0\}
$$

4 squeres Theerem
Let $n \in \mathbb{N}$. Iten $\exists x, y, z, t \in N \cup\{0\}$ st

$$
n=x^{2}+y^{2}+z^{2}+t^{2}
$$

Lemma
If n and n can be milter as set sam of 4 sem seers tex,
so can m, n.

Lemma
If $P K_{i \leqslant p}$ on sold prime st $\Rightarrow x, y, z, t$ st

$$
x^{2}+y^{2}+z^{2}+t^{2}=k_{p}
$$

tref
We will prove that $\exists x, y$ it

$$
x^{2}+y^{2}+1 \equiv 0 \text { (node) }
$$

Consider tex tenno sets

$$
S=\left\{0,1^{2}, 2^{2}, \ldots,\left(\frac{-1}{2}\right)^{2}\right\}
$$

and $T=\left\{-1-0,-1-1^{2},-1-2^{2}, \ldots,-1-\left(\frac{(-1}{2}\right)^{2}\right\}$
II should he clew trot of $x, y \in S$ or $x, y \in T$
then $x \neq y$ (nod p)

However acre
$\frac{A-1}{2}+1$ elements is each set
Thus, S UT hos
$p-1+\alpha=1+1$ elements

$$
x \equiv y(\bmod \rho)
$$

are is S and are in T
Hence $\exists K, m$

$$
\text { st } x=n^{2}, y=-1-m^{2}
$$

there

$$
\begin{aligned}
& n^{2}=-1-m^{2}(\bmod p) \\
& m^{2}+n^{2}+1=0(\bmod p)
\end{aligned}
$$

$\omega m^{2}+n^{2}+1=U_{p}$ fo some K

We hove

$$
\begin{aligned}
n^{2}+m^{2}+1 & \leqslant\left(\frac{n-1}{2}\right)^{2}+\left(\frac{n-1}{2}\right)^{2}+1 \\
& <p^{2}
\end{aligned}
$$

Theorem
Lit p be prime. Then $\exists x, y z, t \in \mathbb{N} \cup\{0\}$ st

$$
p=x^{2}+y^{2}+z^{2}+t^{2}
$$

tray

$$
1+1+0+0=2
$$

From now on cessume p is on old prime.

Let m be smallest natural number st

$$
x^{2}+y^{2}+z^{2}+t^{2}=m p
$$

has a solution $x, y, \geq t \in \mathbb{N} \cup\{0\}$
we will prove $m=1$ by showing that of $m>1$ then sever \rightarrow a smaller sweh nattercob number

Case 1, m is even
Either x, y, z, t ore all even, all ode or in o are even and ind ore old.

Rearrange of necessary is got

$$
\begin{aligned}
& x \equiv y(\bmod 2) \\
& z \equiv t(\operatorname{mad} 2)
\end{aligned}
$$

Then
$\frac{x+y}{2}, \frac{x-y}{2}, \frac{z-t}{2}, \frac{z+t}{2}$ are all integers
and

$$
\begin{aligned}
& \left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}+\left(\frac{z-t}{2}\right)^{2}+\left(\frac{(x+t}{2}\right)^{2} \\
& =\frac{m p}{2}
\end{aligned}
$$

a contraiticties as $\frac{m}{2} \in \mathbb{N}$ and $\frac{m}{2}<m$

From now on cussume in is orel
Find aib,cid $\in \mathbb{Z}$ st

$$
\begin{aligned}
a & \equiv x(\bmod m) \\
b & \equiv y(\bmod m) \\
c & \equiv z(\bmod m) \\
d & \equiv t(\bmod m) \\
-\frac{m}{2} & <a, b, c, d<\frac{m}{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+t^{2}=a^{2}+b^{2}+c^{2}+l^{2} \quad(\operatorname{rrod} m) \\
& * O(\bmod m)
\end{aligned}
$$

๑ コ K st

$$
a^{2}+l^{2}+c^{2}+d^{2}=k m
$$

Also

$$
a^{2}+l^{2}+c^{2}+d^{2} \leqslant 4\left(\frac{m}{2}\right)^{2}=m^{2}
$$

$$
\begin{aligned}
& \Rightarrow K<m \\
& a=l=c=d=0 \\
& \Rightarrow x \equiv y \equiv z \equiv t \equiv 0 \text { (madm) }
\end{aligned}
$$

So $m^{2} /\left(x^{2}+y^{2}+z^{2}+t^{2}\right)$

$$
\Rightarrow m^{2} / m p \Rightarrow m / p
$$

Empors:ble

$$
k>0
$$

We hove

$$
\begin{gathered}
\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\left(a^{2}+l^{2}+c^{2}+d^{2}\right) \\
=K_{m}{ }^{2} p
\end{gathered}
$$

cul

$$
\begin{aligned}
& \left.\left(x^{2}+y^{2}+z^{2}+t^{2}\right)\left(a^{2}+1\right)^{2}+c^{2}+d^{2}\right) \\
& =\left(a x+l y+c z^{(m+x}+d t\right)^{2}+(b x-a y+d z-c t)^{2} \\
& \quad+\left((x-d y-a z+l t)^{2}\right. \\
& (a t)^{2}+(d x+c y-l z-a t)^{2}
\end{aligned}
$$

Eewh of tho latto 4 toras is
divisible ly m^{2}
Then

$$
x^{2}+y^{2}+z^{2}+t^{2}=k p
$$

Centradivts definitien of m, veurefe $m=1$
Wering's prablem
Let $u \in \mathbb{N}$. Then \exists on interigh $g(u)$ it enny intege ca the writtes as a sam of $g(U)$, Ktb powers

$$
g(2)=4
$$

Hilbert (1906) shewed existenco

$$
\begin{aligned}
& g(3)=9 \\
& g(4)=19 \\
& y(5)=37
\end{aligned}
$$

$$
g(u)=\left[\left(\frac{3}{2}\right)^{u}\right]+2^{u}-2
$$

Lust cheched ys to

$$
6 \leq u \leq 471,600,000
$$

Only tex numbers

$$
23 \quad 234
$$

Comot he representerd as a sum of eigght cuby

Defme
$G(U)$ io the en smallect natind number surh etriat call sulficienth lorge naturab numbers cm he wntter as a sum of $G(k) u^{t h}$ powers.

$$
4 \leq G(3) \leq 7
$$

Sell's Equates
$d_{n} \in \mathbb{Z}$
Find $\rightarrow y \in z, t$

$$
\begin{aligned}
& x^{2}-d y^{2}=n \\
& d=0, \quad n<0
\end{aligned}
$$

No solutes

$$
d<0, n>0
$$

fine so $\#$ of salute
If $d=D^{2}$

$$
x^{2}-\nu^{2} y^{2}=(x-\nu y)(x+\nu y)=n
$$

Font \# of solutam
From new on assume $d>0$ and $d \neq \omega^{2}$

Thee
Let $d \in \mathbb{N}, n \in \mathbb{Z}$

$$
\begin{aligned}
& d \neq \omega^{2},|n|<d \\
& \text { If } x^{2}-d y^{2}=n \quad \not y \in \mathbb{Z}
\end{aligned}
$$

Then $\frac{x}{y}$ is a connegent of \sqrt{d}
fag
Assume $n>0$, we hive

$$
(x-\sqrt{d} y)(x+\sqrt{d} y)=n
$$

Then $x>\sqrt{d y}$
s

$$
\begin{aligned}
\frac{x}{y}>\sqrt{d} & \\
\frac{x}{y}-\sqrt{d} & =\frac{x-\sqrt{d} y}{y} \\
& =\frac{x^{2}-\sqrt{d} y y^{2}}{y(x+\sqrt{d} y)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n}{y(x+\sqrt{d y} y)} \\
& <\frac{n}{y(2 \sqrt{d y})} \\
& <\frac{1}{2 y^{2}}
\end{aligned}
$$

Thes $\frac{x}{y}$ is a convargent of \sqrt{d}
$n<0$

$$
\begin{aligned}
& x^{2}-d y^{2}=n \\
& y^{2}-\frac{x^{2}}{d}=-\frac{n}{d}>0
\end{aligned}
$$

Then, ly seme argumat

* a a conrergent of $\frac{1}{\sqrt{2}}$ and theipor of \sqrt{d}

When $n=1$, thes io called pell's equarton

Archimedles and Dighontur cosscberel special cases
12^{*} cents Bhaskera
develeped a mettreeb of solutes
1657 Fermat propozed Es prablen
1767 Euber provided sone frmal
1768 lagrangs proclued a resultes

Pell's Theerem
Let $d \subset \mathbb{N}, d \neq \omega^{2}$
Let $\frac{\mathrm{fa}_{4}}{\mathrm{~g}_{4}}$ be 政 k_{*}
convergent of $\sqrt{2}$
Let st be, period lenget
of $\sqrt{\text { a }}$ centinived frictoss expouion

- When t io wen, 屏 solutwo

$$
x^{2}-d y^{2}=-1
$$

has no selutses
The solutatr of

$$
\begin{aligned}
& x^{2}-d y=1 \\
& x^{2}=p_{4}, y=g_{4} \quad \text { chere } \\
& u=j t-1, \quad j \in \mathbb{N}
\end{aligned}
$$

- When t as oold salutese

$$
x^{2}-d y^{2}=1
$$

ore $x=p u, y=q u$
wher $K=2 j t-1 \quad j \in \mathbb{N}$
The sollixtes

$$
x^{2}-d y^{2}=-1
$$

cre $x=p_{u} \quad y=q_{u}$
where $K=(2 ;-1) t-1 \quad j \in \mathbb{N}$

